Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2010_2_3_a6, author = {David W. K. Yeung}, title = {Time consistent shapley value imputation for cost-saving joint ventures}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {137--149}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/} }
TY - JOUR AU - David W. K. Yeung TI - Time consistent shapley value imputation for cost-saving joint ventures JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2010 SP - 137 EP - 149 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/ LA - en ID - MGTA_2010_2_3_a6 ER -
David W. K. Yeung. Time consistent shapley value imputation for cost-saving joint ventures. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 137-149. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/
[1] Bleeke J., Ernst D., Collaborating to compete, John Wiley Sons, New York, 1993
[2] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957 | MR | Zbl
[3] Blodgett L. L., “Factors in the instability of international joint ventures: An event history analysis”, Strategic Management Journal, 13 (1992), 475–481 | DOI
[4] Cellini R., Lambertini L., “A differential game approach to investment product differentiation”, J. of Economic Dynamics and Control, 27 (2002), 51–62 | DOI | MR | Zbl
[5] Cellini R., Lambertini L., “Private and social incentives towards investment in product differentiation”, Int. Game Theory Review, 6:4 (2004), 493–508 | DOI | MR | Zbl
[6] D'Aspremont C., Jacquemin A., “Cooperative and noncooperative R in duopoly with spillovers”, The American Economic Review, 78:5 (1988), 1133–1137
[7] Kamien M. I., Muller E., Zang I., “Research joint ventures and R cartels”, American Economic Review, 82:5 (1992), 1293–1306 | MR
[8] Parkhe A., “ ‘Messy’ research, methodological predispositions and theory development in international joint ventures”, Academy of Management Review, 18:2 (1993), 227–268 | DOI
[9] Petrosyan L. A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR
[10] Shapley L. S., “A value for $n$-person games”, Contributions to the theory of games, eds. Kuhn H. W., Tucker A. W., Princeton University Press, Princeton, 1953, 307–317 | MR
[11] Suzumura K., “Cooperative and noncooperative R in an oligopoly with spillovers”, The American Economic Review, 82:5 (1992), 1307–1320
[12] Yeung D. W. K., Petrosyan L. A., “Subgame consistent cooperative solutions in stochastic differential games”, Journal of Optimization Theory and Applications, 120:3 (2004), 651–666 | DOI | MR | Zbl
[13] Yeung D. W. K., Petrosyan L. A., Cooperative stochastic differential games, Springer-Verlag, New York, 2006 | MR
[14] Yeung D. W. K., Petrosyan L. A., “Dynamically stable corporate joint ventures”, Automatica, 42 (2006), 365–370 | DOI | MR | Zbl
[15] Yeung D. W. K., Petrosyan L. A., “A cooperative stochastic differential game of transboundary Industrial Pollution”, Automatica, 44 (2008), 1532–1544 | DOI | MR | Zbl