Time consistent shapley value imputation for cost-saving joint ventures
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 137-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

As markets become increasingly globalized and firms become more multinational, corporate joint ventures are likely to yield opportunities to quickly create economies of scale and critical mass, and facilitate rational resource sharing. A major source of gain from joint venture is from cost savings. However, it is often observed that after a certain time of cooperation, some firms may gain sufficient skills and technology that they would do better by breaking up from the joint venture. This is the well-known problem of time inconsistency. In this paper, we consider a dynamic cost saving joint venture which adopts the Shapley value as its profit allocation scheme. A compensation mechanism distributing payments to participating firms at each instant of time is devised to ensure the realization of the Shapley value imputation throughout the venture duration. Hence time-consistency will be attained, and a dynamically stable joint venture can be formed.
Keywords: corporate joint venture, the Shapley value, cost saving, dynamic stability.
@article{MGTA_2010_2_3_a6,
     author = {David W. K. Yeung},
     title = {Time consistent shapley value imputation for cost-saving joint ventures},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/}
}
TY  - JOUR
AU  - David W. K. Yeung
TI  - Time consistent shapley value imputation for cost-saving joint ventures
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 137
EP  - 149
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/
LA  - en
ID  - MGTA_2010_2_3_a6
ER  - 
%0 Journal Article
%A David W. K. Yeung
%T Time consistent shapley value imputation for cost-saving joint ventures
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 137-149
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/
%G en
%F MGTA_2010_2_3_a6
David W. K. Yeung. Time consistent shapley value imputation for cost-saving joint ventures. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 137-149. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a6/

[1] Bleeke J., Ernst D., Collaborating to compete, John Wiley Sons, New York, 1993

[2] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957 | MR | Zbl

[3] Blodgett L. L., “Factors in the instability of international joint ventures: An event history analysis”, Strategic Management Journal, 13 (1992), 475–481 | DOI

[4] Cellini R., Lambertini L., “A differential game approach to investment product differentiation”, J. of Economic Dynamics and Control, 27 (2002), 51–62 | DOI | MR | Zbl

[5] Cellini R., Lambertini L., “Private and social incentives towards investment in product differentiation”, Int. Game Theory Review, 6:4 (2004), 493–508 | DOI | MR | Zbl

[6] D'Aspremont C., Jacquemin A., “Cooperative and noncooperative R in duopoly with spillovers”, The American Economic Review, 78:5 (1988), 1133–1137

[7] Kamien M. I., Muller E., Zang I., “Research joint ventures and R cartels”, American Economic Review, 82:5 (1992), 1293–1306 | MR

[8] Parkhe A., “ ‘Messy’ research, methodological predispositions and theory development in international joint ventures”, Academy of Management Review, 18:2 (1993), 227–268 | DOI

[9] Petrosyan L. A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR

[10] Shapley L. S., “A value for $n$-person games”, Contributions to the theory of games, eds. Kuhn H. W., Tucker A. W., Princeton University Press, Princeton, 1953, 307–317 | MR

[11] Suzumura K., “Cooperative and noncooperative R in an oligopoly with spillovers”, The American Economic Review, 82:5 (1992), 1307–1320

[12] Yeung D. W. K., Petrosyan L. A., “Subgame consistent cooperative solutions in stochastic differential games”, Journal of Optimization Theory and Applications, 120:3 (2004), 651–666 | DOI | MR | Zbl

[13] Yeung D. W. K., Petrosyan L. A., Cooperative stochastic differential games, Springer-Verlag, New York, 2006 | MR

[14] Yeung D. W. K., Petrosyan L. A., “Dynamically stable corporate joint ventures”, Automatica, 42 (2006), 365–370 | DOI | MR | Zbl

[15] Yeung D. W. K., Petrosyan L. A., “A cooperative stochastic differential game of transboundary Industrial Pollution”, Automatica, 44 (2008), 1532–1544 | DOI | MR | Zbl