Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2010_2_3_a5, author = {Elena B. Yanovskaya}, title = {Lorenz-maximal solutions for games with a~restricted cooperation}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {106--136}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/} }
Elena B. Yanovskaya. Lorenz-maximal solutions for games with a~restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 106-136. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/
[1] Branzei R., Dimitrov D., Tijs S., “The equal split-off set for cooperative games”, Game Theory and Mathematical Economics, Banach Center Publications, 71, Institute of Mathematics Polish Academy of Sciences, Warszawa, 2006, 39–46 | DOI | MR | Zbl
[2] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistic Quarterl., 12 (1965), 223–259 | DOI | MR | Zbl
[3] Driessen T., “$k$-convex $n$-person games and their cores”, Zeitschrift für Operations Research. Series A, 30 (1986), 49–84 | MR
[4] Dutta B., “The egalitarian solution and the reduced game properties in convex games”, International Journal of Game Theory, 19 (1990), 153–159 | DOI | MR
[5] Dutta B., Ray D., “A concept of egalitarianism under participation constraints”, Econometrica, 57 (1989), 615–630 | DOI | MR
[6] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl
[7] Hokari T., van Gellekom A., “Population monotonicity and consistency in convex games: Some logical relations”, International Journal of Game Theory, 31 (2002), 593–607 | DOI | MR | Zbl
[8] Hougaard J. L., Peleg B., Thorlund-Petersen L., “On the set of Lorenz-maximal imputations in the core of a balanced game”, International Jouranl of Game Theory, 30 (2001), 147–165 | DOI | MR | Zbl
[9] Kamijo Y., “A two-step value for cooperative games with coalitional structures”, International Game Theory Review, 11 (2009), 207–214 | DOI | MR | Zbl
[10] Llerena F., “An axiomatization of the core of games with restricted cooperation”, Economic Letters, 95 (2007), 80–84 | DOI | MR | Zbl
[11] Owen G., “Values of games with a priori unions”, Essays in Mathematical Economics and Game Theory, eds. Henn R., Moeschlin O., Springer-Verlag, Berlin, 1977, 76–88 | DOI | MR
[12] Peleg B., “On the Reduced Game Property and its Converse”, Int. Journal of Game Theory, 15 (1986), 187–200 ; “A Correction”, Int. Journal of Game Theory, 16 (1987) | DOI | MR | Zbl | MR
[13] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston, 2003, 380 pp. | MR
[14] Yanovskaya E., “Strongly consistent solutions to balanced TU games”, Int. Game Theory Review, 1:1 (1999), 63–85 | DOI | Zbl