Lorenz-maximal solutions for games with a~restricted cooperation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 106-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperative games with a restricted cooperation, defined by an arbitrary collection of feasible coalitions are considered. For this class the Equal Split-Off Set (ESOS) [1] is defined by the same way as for cooperative games with transferable utilities (TU). For the subclass of these games with non-empty cores the Lorenz-maximal solution is also defined by the same way as for TU games. It is shown that if the ESOS of a game with a restricted cooperation intersects with its core, then it is single-valued and Lorenz dominates other vectors from the core, i.e. it coincides with the Lorenz-maximal solution. Cooperative games with coalitional structure for which the collection of feasible coalitions consists of the coalitions of partition, their unions, and subcoalitions of the coalitions of the partition, are investigated more in detail. For these games the convexity property is defined, and for convex games with coalitional structure existence theorems for two egalitarian solutions – Lorenz maximal and Lorenz-Kamijo maximal – are proved. Axiomatic characterizations for both these solutions are given.
Keywords: cooperative games, restricted cooperation, the Equal Split-Off Set, the Dutta–Ray solution
Mots-clés : Lorenz-maximal solution.
@article{MGTA_2010_2_3_a5,
     author = {Elena B. Yanovskaya},
     title = {Lorenz-maximal solutions for games with a~restricted cooperation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {106--136},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/}
}
TY  - JOUR
AU  - Elena B. Yanovskaya
TI  - Lorenz-maximal solutions for games with a~restricted cooperation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 106
EP  - 136
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/
LA  - ru
ID  - MGTA_2010_2_3_a5
ER  - 
%0 Journal Article
%A Elena B. Yanovskaya
%T Lorenz-maximal solutions for games with a~restricted cooperation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 106-136
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/
%G ru
%F MGTA_2010_2_3_a5
Elena B. Yanovskaya. Lorenz-maximal solutions for games with a~restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 106-136. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a5/

[1] Branzei R., Dimitrov D., Tijs S., “The equal split-off set for cooperative games”, Game Theory and Mathematical Economics, Banach Center Publications, 71, Institute of Mathematics Polish Academy of Sciences, Warszawa, 2006, 39–46 | DOI | MR | Zbl

[2] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistic Quarterl., 12 (1965), 223–259 | DOI | MR | Zbl

[3] Driessen T., “$k$-convex $n$-person games and their cores”, Zeitschrift für Operations Research. Series A, 30 (1986), 49–84 | MR

[4] Dutta B., “The egalitarian solution and the reduced game properties in convex games”, International Journal of Game Theory, 19 (1990), 153–159 | DOI | MR

[5] Dutta B., Ray D., “A concept of egalitarianism under participation constraints”, Econometrica, 57 (1989), 615–630 | DOI | MR

[6] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl

[7] Hokari T., van Gellekom A., “Population monotonicity and consistency in convex games: Some logical relations”, International Journal of Game Theory, 31 (2002), 593–607 | DOI | MR | Zbl

[8] Hougaard J. L., Peleg B., Thorlund-Petersen L., “On the set of Lorenz-maximal imputations in the core of a balanced game”, International Jouranl of Game Theory, 30 (2001), 147–165 | DOI | MR | Zbl

[9] Kamijo Y., “A two-step value for cooperative games with coalitional structures”, International Game Theory Review, 11 (2009), 207–214 | DOI | MR | Zbl

[10] Llerena F., “An axiomatization of the core of games with restricted cooperation”, Economic Letters, 95 (2007), 80–84 | DOI | MR | Zbl

[11] Owen G., “Values of games with a priori unions”, Essays in Mathematical Economics and Game Theory, eds. Henn R., Moeschlin O., Springer-Verlag, Berlin, 1977, 76–88 | DOI | MR

[12] Peleg B., “On the Reduced Game Property and its Converse”, Int. Journal of Game Theory, 15 (1986), 187–200 ; “A Correction”, Int. Journal of Game Theory, 16 (1987) | DOI | MR | Zbl | MR

[13] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston, 2003, 380 pp. | MR

[14] Yanovskaya E., “Strongly consistent solutions to balanced TU games”, Int. Game Theory Review, 1:1 (1999), 63–85 | DOI | Zbl