Stable cooperation in differential games with random duration
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 79-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of time-consistency of cooperative solutions is investigated in the paper. This problem was stated by Petrosyan L. A. in 1977 for differential games with finite time horizon. In the paper the modification of the game with finite time horizon is considered in the sense that the game has random time horizon. The Shapley value is used as an optimality principle under cooperative behavior of the players. For this formulation the definition of the imputation distribution procedure (IDP) is given and the analytic formula for IDP is derived. Moreover in the paper the irrational behavior proofness condition by D. W. K. Yeung (2006) is modified for problem with random duration. The tool is based on using IDP. Theoretical results are illustrated by an example of differential game of non-renewable resource extraction.
Keywords: time-consistency, stable cooperation, irrational behavior proofness, non-renewable resource extraction, differential game with random duration.
@article{MGTA_2010_2_3_a4,
     author = {Ekaterina V. Shevkoplyas},
     title = {Stable cooperation in differential games with random duration},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--105},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a4/}
}
TY  - JOUR
AU  - Ekaterina V. Shevkoplyas
TI  - Stable cooperation in differential games with random duration
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 79
EP  - 105
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a4/
LA  - ru
ID  - MGTA_2010_2_3_a4
ER  - 
%0 Journal Article
%A Ekaterina V. Shevkoplyas
%T Stable cooperation in differential games with random duration
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 79-105
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a4/
%G ru
%F MGTA_2010_2_3_a4
Ekaterina V. Shevkoplyas. Stable cooperation in differential games with random duration. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 79-105. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a4/

[1] Petrosyan L. A., “Silno dinamicheski ustoichivye printsipy optimalnosti”, Vestn. S.-Peterburg. un-ta. Ser. 1, 1993, no. 4(22), 35–40 | MR | Zbl

[2] Petrosyan L. A., Danilov N. A., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 52–59 | MR | Zbl

[3] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 106–123 | Zbl

[4] Petrosyan L. A., Murzov N. V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, 6:3 (1966), 423–433 | MR

[5] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik SPbGU. Ser. 1, 2000, no. 4, 18–23 | MR | Zbl

[6] Shevkoplyas E. V., “Uravnenie Gamiltona–Yakobi–Bellmana v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Matematicheskaya teoriya igr i ee prilozheniya, 1:2 (2009), 98–118 | Zbl

[7] Dockner E. J., Jorgensen S., N. van Long, Sorger G., Differential games in economics and management science, Cambridge University Press, 2000 | MR | Zbl

[8] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting in differential games with random duration”, Contributions to Game Theory and Management, Collected papers of the Third International Conference “Game Theory and Management 2009”, St. Petersburg, 2010, 267–280 | MR

[9] Petrosyan L. A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27 (2003), 381–398 | DOI | MR

[10] Shevkoplyas E. V., “The Shapley value in cooperative differential games with random duration”, Advances in Dynamic Games, Theory, Applications, and Numerical Methods for Differential and Stochastic Games, Annals of the International Society of Dynamic Games, 11, eds. M. Breton, K. Szajowski, Springer's imprint Birkhäuser, Boston, 2011, part 4, 359–373 http://www.springerlink.com/content/978-0-8176-8088-6/# section=815141& page=1 | MR

[11] Yeung D. W. K., “An irrational-behavior-proofness condition in cooperative differential games”, Int. J. of Game Theory Rew., 9:1 (2007), 256–273 | MR