Stable cooperation in stochastic games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 21-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers stochastic games with random duration in the class of stationary strategies. The cooperative version for such class of the stochastic game is constructed. The cooperative solution is found. Conditions of stable cooperation for stochastic games are obtained. Principles of stable cooperation include three conditions: subgame consistency, strategic stability and condition of irrational behavior proofness of the cooperative agreement. Also the paper considers the example for which the cooperative agreement is found and the conditions of dynamic stability are checked.
@article{MGTA_2010_2_3_a2,
     author = {Elena M. Parilina},
     title = {Stable cooperation in stochastic games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {21--40},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a2/}
}
TY  - JOUR
AU  - Elena M. Parilina
TI  - Stable cooperation in stochastic games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 21
EP  - 40
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a2/
LA  - ru
ID  - MGTA_2010_2_3_a2
ER  - 
%0 Journal Article
%A Elena M. Parilina
%T Stable cooperation in stochastic games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 21-40
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a2/
%G ru
%F MGTA_2010_2_3_a2
Elena M. Parilina. Stable cooperation in stochastic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 21-40. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a2/

[1] Grauer L. V., Petrosyan L. A., “Mnogoshagovye igry”, Prikladnaya matematika i mekhanika, 68:4 (2004), 667–677 | MR | Zbl

[2] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Ser. 1, 1977, no. 19, 46–52 | Zbl

[3] Petrosyan L. A., Baranova E. M., Shevkoplyas E. V., “Mnogoshagovye kooperativnye igry so sluchainoi prodolzhitelnostyu”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy instituta matematiki i mekhaniki, 10, no. 2, 2004, 116–130 | MR | Zbl

[4] Petrosyan L. A., Danilov N. A., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 52–59 | MR | Zbl

[5] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 106–123 | Zbl

[6] Parilina E. M., “Kooperativnaya igra peredachi dannykh v besprovodnoi seti”, Matematicheskaya teoriya igr i ee prilozheniya, 1:4 (2009), 93–110 | Zbl

[7] Altman E., El-Azouzi R., Jimenez T., “Slotted Aloha as a stochastic game with partial information”, Proceedings of Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks, WiOpt' 03, Sophia Antipolis. France, March 2003

[8] Amir R., “Stochastic games in economics: The latter-theoretic approach”, Stochastic Games and Applications, NATO Science Series C, Mathematical and Physical Sciences, 570, eds. A. Neyman, S. Sorin, Kluwer Academic Publishers, Dordrecht, 2003, Chap. 29, 443–453 | MR

[9] Baranova E. M., Petrosjan L. A., “Cooperative Stochastic Games in Stationary Strategies”, Game theory and Applications, 11 (2006), 7–17

[10] Dutta P., “A Folk Theorem for Stochastic Games”, Journal of Economic Theory, 66 (1995), 1–32 | DOI | MR | Zbl

[11] Grauer L. V., Petrosjan L.A., “Strong Nash Equilibrium in Multistage Games”, International Game Theory Review, 4:3 (2002), 255–264 | DOI | MR | Zbl

[12] Herings P. J.-J., Peeters R. J. A. P., “Stationary Equlibria in Stochastic Games: Structure, Selection, and Computation”, Journal of Economic Theory, 118:1 (2004), 32–60 | DOI | MR | Zbl

[13] Petrosjan L. A., “Cooperative Stochastic Games”, Advances in Dynamic Games. Annals of the International Society of Dynamic Games. Application to Economics, Engineering and Environmental Management, eds. A. Haurie, S. Muto, L. A. Petrosjan, T.E.S. Raghavan, 2006, 139–146 | DOI | MR

[14] Shapley L. S., “Stochastic Games”, Proceedings of National Academy of Sciences of the USA, 39 (1953), 1095–1100 | DOI | MR | Zbl

[15] Yeung D. W. K., “An irrational-behavior-proof condition in cooperative differential games”, International Game Theory Review (IGTR), 8:4 (2006), 739–744 | DOI | MR | Zbl

[16] Yeung D. W. K., Petrosjan L. A., “Subgame consist cooperative solutions in stochastic differential games”, J. optimiz. theory and appl., 120:3 (2004), 651–666 | DOI | MR | Zbl