About the time-optimal problem for one class of two-dimensional bilinear controlled systems
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper one class of bilinear two-dimensional controlled systems is considered. For these systems the bang-bang property of time-optimal control is studied. The bang-bang property is very interesting for applications, because bang-bang controls are very suitable for realization in practice. In the paper some efficient conditions for bang-bang property of time-optimal controls are received. In the capacity as example, it was considered some controlled analog of the L. Richardson model which is well-known in political science.
Keywords: optimal control, bilinear controlled systems, bang-bang property of control, model of L. Richardson.
@article{MGTA_2010_2_3_a1,
     author = {Mikhail S. Nikolskii},
     title = {About the time-optimal problem for one class of two-dimensional bilinear controlled systems},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/}
}
TY  - JOUR
AU  - Mikhail S. Nikolskii
TI  - About the time-optimal problem for one class of two-dimensional bilinear controlled systems
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 7
EP  - 20
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/
LA  - ru
ID  - MGTA_2010_2_3_a1
ER  - 
%0 Journal Article
%A Mikhail S. Nikolskii
%T About the time-optimal problem for one class of two-dimensional bilinear controlled systems
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 7-20
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/
%G ru
%F MGTA_2010_2_3_a1
Mikhail S. Nikolskii. About the time-optimal problem for one class of two-dimensional bilinear controlled systems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 7-20. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/

[1] Agrachëv A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] Li E. B., Markus L., Osnovy optimalnogo upravleniya, Nauka, M., 1972

[4] Nikolskii M. S., “Nekotorye zadachi optimalnogo upravleniya, svyazannye s modelyu L. Richardsona gonki vooruzheniya gosudarstv”, Problemy dinamicheskogo upravleniya. Sbornik nauchnykh trudov, 4, Maks-Press, M., 2009, 113–123

[5] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | Zbl

[6] Saati T. P., Matematicheskie modeli konfliktnykh situatsii, Sov. Radio, M., 1977

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[8] Vakhrameev S. A., “Geometrical and Topological Methods in Optimal Control Theory”, Thematic Surveys, J. on Mathematical Sciences. Contemporary Mathematics and its Applications, 76:5 (1995), 2555–2719 | MR | Zbl