Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2010_2_3_a1, author = {Mikhail S. Nikolskii}, title = {About the time-optimal problem for one class of two-dimensional bilinear controlled systems}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {7--20}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/} }
TY - JOUR AU - Mikhail S. Nikolskii TI - About the time-optimal problem for one class of two-dimensional bilinear controlled systems JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2010 SP - 7 EP - 20 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/ LA - ru ID - MGTA_2010_2_3_a1 ER -
Mikhail S. Nikolskii. About the time-optimal problem for one class of two-dimensional bilinear controlled systems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 3, pp. 7-20. http://geodesic.mathdoc.fr/item/MGTA_2010_2_3_a1/
[1] Agrachëv A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl
[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[3] Li E. B., Markus L., Osnovy optimalnogo upravleniya, Nauka, M., 1972
[4] Nikolskii M. S., “Nekotorye zadachi optimalnogo upravleniya, svyazannye s modelyu L. Richardsona gonki vooruzheniya gosudarstv”, Problemy dinamicheskogo upravleniya. Sbornik nauchnykh trudov, 4, Maks-Press, M., 2009, 113–123
[5] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | Zbl
[6] Saati T. P., Matematicheskie modeli konfliktnykh situatsii, Sov. Radio, M., 1977
[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR
[8] Vakhrameev S. A., “Geometrical and Topological Methods in Optimal Control Theory”, Thematic Surveys, J. on Mathematical Sciences. Contemporary Mathematics and its Applications, 76:5 (1995), 2555–2719 | MR | Zbl