Two types of players in the endogenous coalition formation model
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 79-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of coalition formation by players whose payoff depends on the value of the parameter (e.g., geographical location, bliss point) is considered. In this model a small portion of the new players with a different payoff function is injected into the main population. This paper considers different types of coalition stability and for each describes corresponding stability criteria. The derived conditions are then compared with the similar criteria in the game with a single type of players.
Keywords: coalition stability, Nash equilibrium, weak coalitional equilibrium (WCE).
@article{MGTA_2010_2_2_a3,
     author = {Denis S. Stepanov},
     title = {Two types of players in the endogenous coalition formation model},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a3/}
}
TY  - JOUR
AU  - Denis S. Stepanov
TI  - Two types of players in the endogenous coalition formation model
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 79
EP  - 98
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a3/
LA  - ru
ID  - MGTA_2010_2_2_a3
ER  - 
%0 Journal Article
%A Denis S. Stepanov
%T Two types of players in the endogenous coalition formation model
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 79-98
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a3/
%G ru
%F MGTA_2010_2_2_a3
Denis S. Stepanov. Two types of players in the endogenous coalition formation model. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 79-98. http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a3/

[1] Alesina A., Spolaore E., “On the Number and Size of Nations”, Quarterly Journal of Economics, 112:4 (1997), 1027–1056 | DOI

[2] Alesina A. M., Spolaore E., The size of Nations, MIT Press, Cambridge, MA, 2003

[3] Bogomolnaia A. M., Le Breton M., Savvateev A., et al., Stability of Jurisdiction Structures under the Equal Share and Median Rules, IDEI Working Papers No 362, 2005

[4] Bogomolnaia A. M., Le Breton M., Savvateev A., et al., “The Egalitarian Sharing Rule in Provision of Public Goods”, Economic Bulletin, 8:11 (2005), 1–5

[5] Gomberg A. M., Marhuenda F., Ortuño-Ortín I., “Endogenous Platforms: The Case of Many Parties”, International Journal of Game Theory, 35:2 (2005), 223–249 | DOI | MR

[6] Ortuño-Ortín I., Roemer J. E., Endogenous Party Formation and the Effect of Income Distribution on Policy, WP-AD 2000-06, IVIE, 2000, 921–935

[7] Sosina Yu. V., “Endogenous Formation of Political Structures and Their Stability”, ORM2004, Trudy, MAKS Press, M., 2004, 215–216

[8] Vasin A. A., Stepanov D. S., “Endogenous Formation of Political Parties”, Mathematical and Computer Modelling, 48:9–10 (2008), 1519–1526 | DOI | MR | Zbl