Game-theoretic models of tender's design
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $n$-person non-zero sum game related with the design of tender. Players present some projects which are characterized by some vector of parameters. Arbitrator or some juri chooses one of the projects using a stochastic procedure with some distribution function. The winner receives a payoff which depends on the parameters of the project. The game-theoretic model of the tender is presented and the equilibrium in two and three-dimensional models is derived.
Keywords: game-theoretic tender's model, $n$-person game, Voronoi diagram, arbitration procedure, Nash equilibrium.
@article{MGTA_2010_2_2_a2,
     author = {Vladimir V. Mazalov and Julia S. Tokareva},
     title = {Game-theoretic models of tender's design},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Mazalov
AU  - Julia S. Tokareva
TI  - Game-theoretic models of tender's design
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 66
EP  - 78
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a2/
LA  - ru
ID  - MGTA_2010_2_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Mazalov
%A Julia S. Tokareva
%T Game-theoretic models of tender's design
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 66-78
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a2/
%G ru
%F MGTA_2010_2_2_a2
Vladimir V. Mazalov; Julia S. Tokareva. Game-theoretic models of tender's design. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 2, pp. 66-78. http://geodesic.mathdoc.fr/item/MGTA_2010_2_2_a2/

[1] Mazalov V. V., Mencher A. E., Tokareva Yu. S., “O ravnovesii v modeli peregovorov s arbitrom”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2009, no. 5, 77–83 | MR

[2] Mazalov V. V., Matematicheskaya teoriya igr i prilozheniya, Lan, Sankt-Peterburg–Moskva–Krasnodar, 2009, 446 pp.

[3] De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O., Computational Geometry, Springer, 2000 | MR

[4] Farber H., “An analysis of final-offer arbitration”, Journal of conflict resolution, 24 (1980), 683–705 | DOI

[5] Gibbons R., A Primer in Game Theory, Prentice Hall, 1992

[6] Kilgour M., “Game-theoretic properties of final-offer arbitration”, Group Decision and Negot., 3 (1994), 285–301 | DOI

[7] Mazalov V., Mentcher A., Tokareva J., “On a discrete arbitration procedure”, Scientiae Mathematicae Japonicae, 63:3 (2006), 325–330 | MR | Zbl

[8] Mazalov V., Tokareva J., “Bargaining model on the plane”, Algorithmic and computational theory in algebra and languages, 2008, 42–49