Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2010_2_1_a3, author = {Nikolay A. Zenkevich and Nadezhda V. Kozlovskaya}, title = {Stable {Shapley} value in cooperative game of territorial environmental production}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {67--92}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a3/} }
TY - JOUR AU - Nikolay A. Zenkevich AU - Nadezhda V. Kozlovskaya TI - Stable Shapley value in cooperative game of territorial environmental production JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2010 SP - 67 EP - 92 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a3/ LA - ru ID - MGTA_2010_2_1_a3 ER -
%0 Journal Article %A Nikolay A. Zenkevich %A Nadezhda V. Kozlovskaya %T Stable Shapley value in cooperative game of territorial environmental production %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2010 %P 67-92 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a3/ %G ru %F MGTA_2010_2_1_a3
Nikolay A. Zenkevich; Nadezhda V. Kozlovskaya. Stable Shapley value in cooperative game of territorial environmental production. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 67-92. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a3/
[1] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestn. Leningr. un-ta. Ser. 1, 1977, no. 19(4), 46–52 | Zbl
[2] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Mat. teoriya igr i eë prilozheniya, 1:1 (2009), 102–117 | MR | Zbl
[3] Borkey P., Leveque F., “Voluntary approaches for environmental protection in the European Union – a survey”, European Environment, 10 (2000), 35–54 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[4] Demsetz H., “Toward a theory of property rights”, The American Economic Review, 57:2 (1967), 347–359
[5] Dockner E. J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, 2000, 485 pp. | MR | Zbl
[6] Katsoulacos Y., Xepapadeas A., “Environmental policy under oligopoly with endogenous market structure”, Scand. J. of Economics, 97:3 (1995), 411–420 | DOI | Zbl
[7] Nash J. F., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl
[8] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27 (2003), 381–398 | DOI | MR
[9] Petrosyan L., Kozlovskaya N., “Differential coalitional environmental management game”, Game theory and applications, 14, St. Petersburg State University, Russia, Accepted
[10] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games II, Princeton University Press, Prineton, 1953, 57–69 | MR
[11] Stimming M., “Capital accumulation subject to pollution control: Open-Loop versus feedback investment strategies”, Annals of Operations Research, 88 (1999), 309–336 | DOI | MR | Zbl
[12] Yeung D. W. K., “An irrational-behavior-proofness condition in cooperative differential games”, Intern. J. of Game Theory Rew., 8 (2006), 739–744 | DOI | MR | Zbl