Solutions for a~class stochastic coalitional games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 47-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper one of classes of multistage stochastic games with various coalition structures is considered. Game researched here is set on the tree graph where in each vertex $z$ coalition structures of players, function of a payoff of coalitions and probability of transition in following vertexes depending on a situation realised in game, set in vertex $z$ is defined. A new mathematical method of the decision of stochastic coalition games on the basis of calculation of the generalised PMS-vector as decisions of coalition games is offered. The offered method is illustrated by example of three-step stochastic game of three persons with variable coalition structure.
Keywords: optimization, multistage games, stochastic games, Nash equilibrium, PMS-vector.
@article{MGTA_2010_2_1_a2,
     author = {Kseniya V. Grigorieva},
     title = {Solutions for a~class stochastic coalitional games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {47--66},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a2/}
}
TY  - JOUR
AU  - Kseniya V. Grigorieva
TI  - Solutions for a~class stochastic coalitional games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 47
EP  - 66
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a2/
LA  - ru
ID  - MGTA_2010_2_1_a2
ER  - 
%0 Journal Article
%A Kseniya V. Grigorieva
%T Solutions for a~class stochastic coalitional games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 47-66
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a2/
%G ru
%F MGTA_2010_2_1_a2
Kseniya V. Grigorieva. Solutions for a~class stochastic coalitional games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a2/

[1] Grigoreva K. V., “Arbitrazhnaya skhema Nesha v reshenii bimatrichnykh koalitsionnykh igr”, Mezhvuzovskii tematicheskii sbornik trudov SPbGASU, 15, 2009, 56–61 | MR

[2] Zenkevich N. A., Petrosyan L. A., Yang D. V. K., Dinamicheskie igry i ikh prilozheniya v menedzhmente, Vysshaya Shkola Menedzhmenta, Sankt-Peterburg, 2009

[3] Petrosyan L. A., Zenkevich N. A., Semina E., Teoriya igr, Vysshaya Shkola, Moskva, 1998 | MR | Zbl

[4] Grigorieva X., Mamkina S., “Solutions of Bimatrix Coalitional Games”, Contributions to game and management, Collected papers printed on the Second International Conference “Game Theory and Management” (GTM'2008), eds. Leon A. Petrosjan, Nikolay A. Zenkevich, Graduate School of Management, SpbSU, 2009, 147–153 | MR | Zbl

[5] Nash J., “Non-cooperative Games”, Ann. Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[6] Petrosjan L., Mamkina S., “Dynamic Games with Coalitional Structures”, Intersectional Game Theory Review, 8:2 (2006), 295–307 | DOI | MR | Zbl

[7] Shapley L. S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, eds. Kuhn H. W., Tucker A. W., Princeton University Press, 1953, 307–317 | MR