Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2010_2_1_a0, author = {Arina N. Akimova and Viktor V. Zakharov}, title = {A method for estimating the core of root game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--26}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/} }
Arina N. Akimova; Viktor V. Zakharov. A method for estimating the core of root game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/
[1] Akimova A. N., “Analiticheskii metod resheniya spetsialnoi zadachi lineinogo programmirovaniya”, Tezisy dokladov mezhdunarodnogo kongressa “Nelineinyi dinamicheskii analiz”, S.-Peterburg, Rossiya, 2007, 315
[2] Bondareva O. N., “Teoriya yadra v igre $n$ lits”, Vestnik Leningradskogo universiteta. Seriya mat., mekh., astr., 1962, no. 13(3), 141–142 | MR | Zbl
[3] Bondareva O. N., “Nekotorye primeneniya metodov lineinogo programmirovaniya k teorii kooperativnykh igr”, Problemy kibernetiki, 10, Fizmatgiz, M., 1963, 119–140 | MR
[4] Eremin I. I., Lineinaya optimizatsiya i sistemy lineinykh neravenstv, Izdatelskii tsentr “Akademiya”, Moskva, 2007
[5] Zakharov V. V., Akimova A. N., “O nekotorykh selektorakh $C$-yadra”, Vestnik Sankt-Peterburgskogo Universiteta. Ser. 1, 2002, no. 3, 10–16 | MR | Zbl
[6] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izdatelstvo Evropeiskogo universiteta v S.-Peterburge, S.-Peterburg, 2004
[7] Calleja P., Rafels C., Tijs S., “The Aggregate-Monotonic Core”, Games and Economic Behavior, 66 (2009), 742–748 | DOI | Zbl
[8] Megiddo N., “On the nonmonotonicity of the bargaining set, the kernel and the nucleolus of a game”, SIAM J. on Applied Mathematics, 27 (1974), 355–358 | DOI | MR
[9] Owen G., Game theory, third edition, Academic Press, New York, 1995 | MR | Zbl
[10] Peleg B., “An inductive method for constructing minimal balanced collections of finite sets”, Naval Research Logistics Quarterly, 12:2 (1965), 155–162 | DOI | MR | Zbl
[11] Shapley L. S., “On balanced sets and cores”, Naval Research Logistic Quarterly, 14 (1967), 453–460 | DOI
[12] Simonnard M., Linear programming, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966 | MR | Zbl
[13] Zakharov V. V., “About selectors of the core in dynamic games”, Proceedings of the 7th ISDG symposium on Dynamic Game and Applications, Kanagawa, Japan, 1996
[14] Zakharov V. V., Akimova A. N., “Nucleolus as a Selector of Subcore”, Proceedings Volume from the 11th IFAC Workshop “Control Applications of Optimization” (S.-Petersburg, Russia), v. 2, ed. Zakharov V. V., Pergamon, Great Britain, 2000, 675–680
[15] Zakharov V. V., Akimova A. N., “Geometrical Properties of Subcore”, Game Theory and Applications, 8 (2002), 279–289 | MR
[16] Zakharov V. V., Kwon O-H., “Selectors of the core and consistency properties”, Game Theory and Applications, 4 (1999), 237–250 | MR