A method for estimating the core of root game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 3-26

Voir la notice de l'article provenant de la source Math-Net.Ru

It is showen that the base of grand (shadow) subcore coincides with the core of the root game in any TU-cooperative game. Comparing definitions of grand subcore and grand shadow subcore with description of aggregate-monotonic core leads to the formal geometrical coincidence of aggregate-monotonic core with either grand subcore or grand shadow subcore. The method for estimating the simplest set of equations and inequalities describing the core of a root game in TU-game with any number of players ($n\ge3$) is proposed. To develop the method dual theory and inductive method by B. Peleg are used.
Keywords: TU-cooperative game, grand (shadow) subcore, root game, aggregate-monotonic core, linear programming, balanced collection of coalitions.
Mots-clés : core
@article{MGTA_2010_2_1_a0,
     author = {Arina N. Akimova and Viktor V. Zakharov},
     title = {A method for estimating the core of root game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/}
}
TY  - JOUR
AU  - Arina N. Akimova
AU  - Viktor V. Zakharov
TI  - A method for estimating the core of root game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 3
EP  - 26
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/
LA  - ru
ID  - MGTA_2010_2_1_a0
ER  - 
%0 Journal Article
%A Arina N. Akimova
%A Viktor V. Zakharov
%T A method for estimating the core of root game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 3-26
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/
%G ru
%F MGTA_2010_2_1_a0
Arina N. Akimova; Viktor V. Zakharov. A method for estimating the core of root game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/