A method for estimating the core of root game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is showen that the base of grand (shadow) subcore coincides with the core of the root game in any TU-cooperative game. Comparing definitions of grand subcore and grand shadow subcore with description of aggregate-monotonic core leads to the formal geometrical coincidence of aggregate-monotonic core with either grand subcore or grand shadow subcore. The method for estimating the simplest set of equations and inequalities describing the core of a root game in TU-game with any number of players ($n\ge3$) is proposed. To develop the method dual theory and inductive method by B. Peleg are used.
Keywords: TU-cooperative game, grand (shadow) subcore, root game, aggregate-monotonic core, linear programming, balanced collection of coalitions.
Mots-clés : core
@article{MGTA_2010_2_1_a0,
     author = {Arina N. Akimova and Viktor V. Zakharov},
     title = {A method for estimating the core of root game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/}
}
TY  - JOUR
AU  - Arina N. Akimova
AU  - Viktor V. Zakharov
TI  - A method for estimating the core of root game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2010
SP  - 3
EP  - 26
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/
LA  - ru
ID  - MGTA_2010_2_1_a0
ER  - 
%0 Journal Article
%A Arina N. Akimova
%A Viktor V. Zakharov
%T A method for estimating the core of root game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2010
%P 3-26
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/
%G ru
%F MGTA_2010_2_1_a0
Arina N. Akimova; Viktor V. Zakharov. A method for estimating the core of root game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2010_2_1_a0/

[1] Akimova A. N., “Analiticheskii metod resheniya spetsialnoi zadachi lineinogo programmirovaniya”, Tezisy dokladov mezhdunarodnogo kongressa “Nelineinyi dinamicheskii analiz”, S.-Peterburg, Rossiya, 2007, 315

[2] Bondareva O. N., “Teoriya yadra v igre $n$ lits”, Vestnik Leningradskogo universiteta. Seriya mat., mekh., astr., 1962, no. 13(3), 141–142 | MR | Zbl

[3] Bondareva O. N., “Nekotorye primeneniya metodov lineinogo programmirovaniya k teorii kooperativnykh igr”, Problemy kibernetiki, 10, Fizmatgiz, M., 1963, 119–140 | MR

[4] Eremin I. I., Lineinaya optimizatsiya i sistemy lineinykh neravenstv, Izdatelskii tsentr “Akademiya”, Moskva, 2007

[5] Zakharov V. V., Akimova A. N., “O nekotorykh selektorakh $C$-yadra”, Vestnik Sankt-Peterburgskogo Universiteta. Ser. 1, 2002, no. 3, 10–16 | MR | Zbl

[6] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izdatelstvo Evropeiskogo universiteta v S.-Peterburge, S.-Peterburg, 2004

[7] Calleja P., Rafels C., Tijs S., “The Aggregate-Monotonic Core”, Games and Economic Behavior, 66 (2009), 742–748 | DOI | Zbl

[8] Megiddo N., “On the nonmonotonicity of the bargaining set, the kernel and the nucleolus of a game”, SIAM J. on Applied Mathematics, 27 (1974), 355–358 | DOI | MR

[9] Owen G., Game theory, third edition, Academic Press, New York, 1995 | MR | Zbl

[10] Peleg B., “An inductive method for constructing minimal balanced collections of finite sets”, Naval Research Logistics Quarterly, 12:2 (1965), 155–162 | DOI | MR | Zbl

[11] Shapley L. S., “On balanced sets and cores”, Naval Research Logistic Quarterly, 14 (1967), 453–460 | DOI

[12] Simonnard M., Linear programming, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966 | MR | Zbl

[13] Zakharov V. V., “About selectors of the core in dynamic games”, Proceedings of the 7th ISDG symposium on Dynamic Game and Applications, Kanagawa, Japan, 1996

[14] Zakharov V. V., Akimova A. N., “Nucleolus as a Selector of Subcore”, Proceedings Volume from the 11th IFAC Workshop “Control Applications of Optimization” (S.-Petersburg, Russia), v. 2, ed. Zakharov V. V., Pergamon, Great Britain, 2000, 675–680

[15] Zakharov V. V., Akimova A. N., “Geometrical Properties of Subcore”, Game Theory and Applications, 8 (2002), 279–289 | MR

[16] Zakharov V. V., Kwon O-H., “Selectors of the core and consistency properties”, Game Theory and Applications, 4 (1999), 237–250 | MR