Linear-quadratic non-antagonistic discrete-time dynamic games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 87-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear-quadratic discrete-time dynamic games are considered. The necessary and sufficient conditions of the existence of Nash equilibrium in such class of games are presented. Different cooperative solutions are obtained. D.W.K. Yeung's condition for linear-quadratic discrete-time dynamic games is studied. As an example, the model of production planning under competition is examined.
Keywords: linear-quadratic games, Nash equilibrium, cooperative games, D.W.K. Yeung's condition.
@article{MGTA_2009_1_3_a5,
     author = {Anna Tur},
     title = {Linear-quadratic non-antagonistic discrete-time dynamic games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {87--106},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a5/}
}
TY  - JOUR
AU  - Anna Tur
TI  - Linear-quadratic non-antagonistic discrete-time dynamic games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 87
EP  - 106
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a5/
LA  - ru
ID  - MGTA_2009_1_3_a5
ER  - 
%0 Journal Article
%A Anna Tur
%T Linear-quadratic non-antagonistic discrete-time dynamic games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 87-106
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a5/
%G ru
%F MGTA_2009_1_3_a5
Anna Tur. Linear-quadratic non-antagonistic discrete-time dynamic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 87-106. http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a5/

[1] Zenkevich N.A., Petrosyan L.A., “Differentsialnye igry v menedzhmente”, Nauchnye doklady Nauchno-issledovatelskogo instituta menedzhmenta SPbGU, 2006, no. 38(R), 6–8

[2] Petrosyan L.A., “Postroenie silno dinamicheski ustoichivykh reshenii v kooperativnykh differentsialnykh igrakh”, Vestn. S.-Peterb. un-ta, 1992, no. 4, 33–38 | MR | Zbl

[3] Petrosyan L.A., Danilov N.N., “Ustoichivost reshenii v neantagonisticheskikh differentsialnykh igrakh s transferabelnymi vyigryshami”, Vestn. Leningr. un-ta, 1979, no. 1, 46–54

[4] Smirnov E.Ya., Stabilizatsiya programmnykh dvizhenii, Izd-vo S.-Peterburgskogo universiteta, SPb, 1997

[5] Basar T., Olsder G.J., Non-cooperative differential games, Academic Press, 1992

[6] Nash J., “Non-cooperative Games”, Ann. of Math., 54 (1951), 286–295 | DOI | MR | Zbl

[7] Petrosjan L.A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamic and Control, 27 (2003), 381–398 | DOI | MR | Zbl

[8] Petrosjan L.A., Yeung D.W.K., “Proportional Time-Consistent Solution in Differential Games”, Extended Abstracts Volume of the 2-nd International Conference “Logic, Game Theory and Social Choice”, St. Petersburg State University, 2001, 254–256

[9] Shapley L.S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, v. II, Princeton University Press, Princeton, 1953, 307–317 | MR

[10] Yeung D.W.K., “An Irrational-Behavior-Proof Condition in Cooperative Defferential Games”, IGTR, 8:4 (2006), 739–744 | MR | Zbl