Cooperative incentive condition in bioresource management problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 71-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete-time game model related with the bioresource management problem (fish catching) is considered. The center (referee) shares a reservoir between the competitors. The players (countries), which harvest the fish stock are the participants of this game. We assume that there is a migratory exchange between the regions of the reservoir. The Nash and cooperative equilibria are obtained for infinite planning horizon. Time-consistent imputation distribution procedure is considered as a method for maintenance the cooperation. The new condition which offers an incentive to players to keep cooperation is introduced and we call it incentive cooperative condition.
Keywords: dynamic games, bioresource management problem, cooperative equilibrium, time-consistency, imputation distribution procedure.
@article{MGTA_2009_1_3_a4,
     author = {Anna Rettieva},
     title = {Cooperative incentive condition in bioresource management problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a4/}
}
TY  - JOUR
AU  - Anna Rettieva
TI  - Cooperative incentive condition in bioresource management problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 71
EP  - 86
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a4/
LA  - ru
ID  - MGTA_2009_1_3_a4
ER  - 
%0 Journal Article
%A Anna Rettieva
%T Cooperative incentive condition in bioresource management problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 71-86
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a4/
%G ru
%F MGTA_2009_1_3_a4
Anna Rettieva. Cooperative incentive condition in bioresource management problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 71-86. http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a4/

[1] Mazalov V.V., Rettieva A.N., “Ravnovesie po Neshu v zadachakh okhrany okruzhayuschei sredy”, Mat. modelirovanie, 18:5 (2006), 73–90 | MR | Zbl

[2] Mazalov V.V., Rettieva A.N., “Reguliruemoe ravnovesie v diskretnoi zadache razdeleniya bioresursov”, Doklady Akademii Nauk, 423:3 (2008), 320–322 | MR | Zbl

[3] Petrosyan L.A., “Ustoichivye resheniya differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo Universiteta, 1977, no. 19, 46–52 | Zbl

[4] Petrosyan L.A., Danilov N.N., Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomskogo Universiteta, Tomsk, 1982 | MR

[5] Başar T., Olsder G.J., Dynamic noncooperative game theory, Academic Press, NY, 1982 | MR | Zbl

[6] Fisher R.D., Mirman L.J., “The complete fish wars: biological and dynamic interactions”, J. of Environmental Economics and Management, 30 (1996), 34–42 | DOI

[7] Levhari D., Mirman L.J., “The great fish war: an example using a dynamic Cournot-Nash solution”, The Bell J. of Econom., 11:1 (1980), 322–334 | DOI | MR

[8] Mazalov V.V., Rettieva A.N., “Bioresource management problem with changing area for fishery”, Game Theory and Applications, 13, 2008, 105–114 | MR | Zbl

[9] Mazalov V.V., Rettieva A.N., “Incentive equilibrium in bioresource management problem”, Evolutionary methods for design, optimization and control, CIMNE, Barcelona, Spain, 2008, 301–312

[10] Petrosjan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. of Economic Dynamic and Control, 7 (2003), 381–398 | DOI | MR | Zbl

[11] Yeung D.W.K., “An irrational-behavior-proof condition in cooperative differential games”, Game Theory Review., 8:4 (2006), 739–744 | DOI | MR | Zbl