Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2009_1_3_a2, author = {Anna Ivashko}, title = {Full-information best-choice game with two stops}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {31--45}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a2/} }
Anna Ivashko. Full-information best-choice game with two stops. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 3, pp. 31-45. http://geodesic.mathdoc.fr/item/MGTA_2009_1_3_a2/
[1] Mazalov V.V., Vinnichenko S.V., Momenty ostanovki i upravlyaemye sluchainye bluzhdaniya, Nauka, Novosibirsk, 1992, 104 pp. | MR | Zbl
[2] Nikolaev M.L., “Ob odnom obobschenii zadachi nailuchshego vybora”, Teoriya veroyatnostei i ee primeneniya, 22:1 (1977), 191–194 | MR | Zbl
[3] Nikolaev M.L., “Optimalnye pravila mnogokratnoi ostanovki”, Obozrenie prikladnoi i promyshlennoi matematiki, 5:2 (1998), 309–348 | Zbl
[4] Falko A.A., “Igra nailuchshego vybora s vozmozhnostyu otkaza ot predlozheniya i pereraspredeleniem veroyatnostei”, Metody matematicheskogo modelirovaniya i informatsionnye tekhnologii, Trudy IPMI, 7, KarNTs RAN, Petrozavodsk, 2006, 87–94
[5] Falko A.A., “Zadacha nailuchshego vybora dvukh ob'ektov”, Metody matematicheskogo modelirovaniya i informatsionnye tekhnologii, Trudy IPMI, 8, KarNTs RAN, Petrozavodsk, 2007, 34–42
[6] Baston Vic.J., Garnaev A.Y., “Competition for staff between two department”, Game Theory and Applications, 10, 2005, 13–26 | MR
[7] Enns E.G., Ferenstein E.Z., “On a multiperson time-sequential game with priorities”, Sequential Anal., 6 (1987), 239–256 | DOI | MR | Zbl
[8] Fushimi M., “The secretary problem in a competitive situation”, J. Oper. Res. Soc. Japan, 24:4 (1981), 350–359 | MR | Zbl
[9] Garnaev A., Solovyev A., “On a two department multi stage game”, Extended abstracts of International Workshop “Optimal Stopping and Stochastic Control” (August 22–26, 2005, Petrozavodsk, Russia), 2005, 24–37
[10] Sofronov G., Keith J., Kroese D., “An optimal sequential procedure for a buying-selling problem with independent observations”, J. Appl. Prob., 43 (2006), 454–462 | DOI | MR | Zbl
[11] Sakaguchi M., “Non-zero-sum games related to the secretary problem”, J. Oper. Res. Sos. Jap., 23:3 (1980), 287–293 | MR | Zbl
[12] Sakaguchi M., “Non-zero-sum best-choice games where two stops are required”, Scientiae Mathematicae Japonicae, 58:1 (2003), 137–148 | MR | Zbl
[13] Sakaguchi M., “Optimal stopping games where players have weighted privilege”, Advances in Dynamic Games, Annals of the International Society of Dynamic Games, 7, 2005, 285–294 | DOI | MR
[14] Sakaguchi M., Mazalov V., “A non-zero-sum no-information best-choice game”, Mathematical Methods of Operation Research, 60 (2004), 437–451 | DOI | MR | Zbl
[15] Smith M., “A secretary problem with uncertain employment”, J. Appl. Probab., 12:3 (1975), 620–624 | DOI | MR | Zbl
[16] Szajowski K., “On non-zero-sum game with priority in secretary problem”, Math. Japonica, 37 (1992), 415–426 | MR | Zbl
[17] Tamaki M., “Minimal expected ranks for the secretary problems with uncertain selection”, Game Theory, Optimal Stopping, Probability and Statistics, eds. Bruss F.T. and Cam L.Le, Institute of Mathematical Statistics, 2000, 127–139 | DOI | MR | Zbl