The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 98-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of differential games with random duration is studied. It turns out that the problem with random duration of the game can be simplified to the standard problem with infinite time horizon. The Hamilton-Jacobi-Bellman equation which help us to find the optimal solution under condition of random duration of the processes is derived. The results are illustrated with a game-theoretical model of non-renewable resource extraction. The problem is analyzed under condition of Weibull distribution for the random terminal time of the game.
Keywords: differential games, Hamilton-Jacobi-Bellman equation, random duration, non-renewable resource extraction.
@article{MGTA_2009_1_2_a5,
     author = {Ekaterina Shevkoplyas},
     title = {The {Hamilton-Jacobi-Bellman} equation for a class of differential games with random duration},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {98--118},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/}
}
TY  - JOUR
AU  - Ekaterina Shevkoplyas
TI  - The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 98
EP  - 118
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/
LA  - ru
ID  - MGTA_2009_1_2_a5
ER  - 
%0 Journal Article
%A Ekaterina Shevkoplyas
%T The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 98-118
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/
%G ru
%F MGTA_2009_1_2_a5
Ekaterina Shevkoplyas. The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 98-118. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/

[1] Gavrilov L.A., Gavrilova N.S., Biologiya prodolzhitelnosti zhizni, Nauka, M., 1991

[2] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Izd-vo inostrannoi literatury, M., 1962

[3] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[4] Matveevskii V.R., Nadezhnost tekhnicheskikh sistem, Uchebnoe posobie, MGU elektroniki i matematiki, Moskva, 2002

[5] Petrosyan L.A., Differentsialnye igry presledovaniya, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl

[6] Petrosyan L.A., Danilov N.V., Kooperativnye differentsialnye igry i prilozheniya, Izd-vo Tomskogo universiteta, Tomsk, 1985 | MR | Zbl

[7] Petrosyan L.A., Murzov N.V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, 1966, no. VI-3, 423–433 | Zbl

[8] Petrosyan L.A., Shevkoplyas E.V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik SPbGU. Ser. 1, 2000, no. 4, 18–23 | MR | Zbl

[9] Shevkoplyas E.V., Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu, Avtoref. dis. kand. fiz.-mat. nauk, OOP NIIKh SPbGU, SPb., 2004

[10] Shevkoplyas E.V., “O postroenii kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Trudy Mezhd. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona-Yakobi”, posvyaschennogo 60-letiyu akademika A.I. Subbotina, v. 1, izd-vo Uralskogo un-ta, Ekaterinburg, 2006, 285–293

[11] Chang F.R., Stochastic Optimization in Continuous Time, Cambridge Univ. Press, 2004 | MR

[12] Dockner E.J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge Univ. Press, 2000 | MR | Zbl

[13] Haurie A., “A Multigenerational Game Model to Analyze Sustainable Development”, Annals of Operations Research, 137:1 (2005), 369–386 | DOI | MR | Zbl

[14] Henley E.J., Kumamoto H., Reliability engineering and risk assessment, Prentice-Hall, Inc., 1981

[15] Karp L., “Non-constant discounting in continuous time”, Journal of Economic Theory, 132 (2007), 557–568 | DOI | MR | Zbl

[16] Marín-Solano J., Navas J., “Non-constant discounting in finite horizon: the free terminal time case”, Journal of Economic Dynamics and Control, 33 (2009), 666–675 | DOI | MR | Zbl

[17] Yaari M.E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI