Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2009_1_2_a5, author = {Ekaterina Shevkoplyas}, title = {The {Hamilton-Jacobi-Bellman} equation for a class of differential games with random duration}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {98--118}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/} }
TY - JOUR AU - Ekaterina Shevkoplyas TI - The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2009 SP - 98 EP - 118 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/ LA - ru ID - MGTA_2009_1_2_a5 ER -
%0 Journal Article %A Ekaterina Shevkoplyas %T The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2009 %P 98-118 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/ %G ru %F MGTA_2009_1_2_a5
Ekaterina Shevkoplyas. The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 98-118. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a5/
[1] Gavrilov L.A., Gavrilova N.S., Biologiya prodolzhitelnosti zhizni, Nauka, M., 1991
[2] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Izd-vo inostrannoi literatury, M., 1962
[3] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[4] Matveevskii V.R., Nadezhnost tekhnicheskikh sistem, Uchebnoe posobie, MGU elektroniki i matematiki, Moskva, 2002
[5] Petrosyan L.A., Differentsialnye igry presledovaniya, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl
[6] Petrosyan L.A., Danilov N.V., Kooperativnye differentsialnye igry i prilozheniya, Izd-vo Tomskogo universiteta, Tomsk, 1985 | MR | Zbl
[7] Petrosyan L.A., Murzov N.V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, 1966, no. VI-3, 423–433 | Zbl
[8] Petrosyan L.A., Shevkoplyas E.V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik SPbGU. Ser. 1, 2000, no. 4, 18–23 | MR | Zbl
[9] Shevkoplyas E.V., Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu, Avtoref. dis. kand. fiz.-mat. nauk, OOP NIIKh SPbGU, SPb., 2004
[10] Shevkoplyas E.V., “O postroenii kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Trudy Mezhd. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona-Yakobi”, posvyaschennogo 60-letiyu akademika A.I. Subbotina, v. 1, izd-vo Uralskogo un-ta, Ekaterinburg, 2006, 285–293
[11] Chang F.R., Stochastic Optimization in Continuous Time, Cambridge Univ. Press, 2004 | MR
[12] Dockner E.J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge Univ. Press, 2000 | MR | Zbl
[13] Haurie A., “A Multigenerational Game Model to Analyze Sustainable Development”, Annals of Operations Research, 137:1 (2005), 369–386 | DOI | MR | Zbl
[14] Henley E.J., Kumamoto H., Reliability engineering and risk assessment, Prentice-Hall, Inc., 1981
[15] Karp L., “Non-constant discounting in continuous time”, Journal of Economic Theory, 132 (2007), 557–568 | DOI | MR | Zbl
[16] Marín-Solano J., Navas J., “Non-constant discounting in finite horizon: the free terminal time case”, Journal of Economic Dynamics and Control, 33 (2009), 666–675 | DOI | MR | Zbl
[17] Yaari M.E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI