Multistage networking games with full information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 66-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multistage networking games with full information are considered. The network structure which connects the players is defined at every time moment. We assume that each verge has a utility (the player's profit form the connection with another player), and players have a right to change network structure at every stage. The approach to define optimal players' behavior is proposed.
Keywords: network, networking games, utility, Shapley value, Nash equilibrium.
@article{MGTA_2009_1_2_a3,
     author = {Leon Petrosjan and Artem Sedakov},
     title = {Multistage networking games with full information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {66--81},
     year = {2009},
     volume = {1},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/}
}
TY  - JOUR
AU  - Leon Petrosjan
AU  - Artem Sedakov
TI  - Multistage networking games with full information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 66
EP  - 81
VL  - 1
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/
LA  - ru
ID  - MGTA_2009_1_2_a3
ER  - 
%0 Journal Article
%A Leon Petrosjan
%A Artem Sedakov
%T Multistage networking games with full information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 66-81
%V 1
%N 2
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/
%G ru
%F MGTA_2009_1_2_a3
Leon Petrosjan; Artem Sedakov. Multistage networking games with full information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 66-81. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/

[1] Bellman R., Dinamicheskoe programmirovanie, M., 1960 | MR

[2] Petrosyan L.A., Kuzyutin D.V., Igry v razvernutoi forme: optimalnost i ustoichivost, SPb, 2000 | MR

[3] Petrosyan L.A., Sedakov A.A., Syurin A.N., “Mnogoshagovye igry s koalitsionnoi strukturoi”, Vestnik SPbGU, 10:3 (2006), 97–110

[4] Adjeroh D., Kandaswamy U., “Game-Theoretic Analysis of Network Community Structure”, International Journal of Computational Intelligence Res., 3:4 (2007), 313–325 | DOI | MR

[5] Bellman R.E., “On the Theory of Dynamic Programming”, Proceedings of the National Academy of Sciences U.S.A., 38 (1952), 716–719 | DOI | MR | Zbl

[6] Kuhn H.W., “Extensive Games and Problem Information”, Ann. Math Studies, 28 (1953), 193–216 | MR | Zbl

[7] Nash J., “Non-cooperative Games”, Ann. of Math., 54 (1951), 286–295 | DOI | MR | Zbl

[8] Petrosjan L.A., Mamkina S.I., “Value for the Games with Changing Coalitional Structure”, Games Theory and Applications, 10, 2005, 141–152 | MR

[9] Shapley L.S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, v. II, Princeton University Press, Princeton, 1953, 307–317 | MR

[10] Vives X., “Nash equilibrium with strategic complementarities”, Journal of Mathematical Economics, 19:3 (1990), 305–321 | DOI | MR | Zbl

[11] Vives X., Strategic Complementarities in Multi-Stage Games, CEPR Discussion Papers 5583, C.E.P.R. Discussion Papers, 2006