Multistage networking games with full information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 66-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multistage networking games with full information are considered. The network structure which connects the players is defined at every time moment. We assume that each verge has a utility (the player's profit form the connection with another player), and players have a right to change network structure at every stage. The approach to define optimal players' behavior is proposed.
Keywords: network, networking games, utility, Shapley value, Nash equilibrium.
@article{MGTA_2009_1_2_a3,
     author = {Leon Petrosjan and Artem Sedakov},
     title = {Multistage networking games with full information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {66--81},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/}
}
TY  - JOUR
AU  - Leon Petrosjan
AU  - Artem Sedakov
TI  - Multistage networking games with full information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 66
EP  - 81
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/
LA  - ru
ID  - MGTA_2009_1_2_a3
ER  - 
%0 Journal Article
%A Leon Petrosjan
%A Artem Sedakov
%T Multistage networking games with full information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 66-81
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/
%G ru
%F MGTA_2009_1_2_a3
Leon Petrosjan; Artem Sedakov. Multistage networking games with full information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 66-81. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a3/

[1] Bellman R., Dinamicheskoe programmirovanie, M., 1960 | MR

[2] Petrosyan L.A., Kuzyutin D.V., Igry v razvernutoi forme: optimalnost i ustoichivost, SPb, 2000 | MR

[3] Petrosyan L.A., Sedakov A.A., Syurin A.N., “Mnogoshagovye igry s koalitsionnoi strukturoi”, Vestnik SPbGU, 10:3 (2006), 97–110

[4] Adjeroh D., Kandaswamy U., “Game-Theoretic Analysis of Network Community Structure”, International Journal of Computational Intelligence Res., 3:4 (2007), 313–325 | DOI | MR

[5] Bellman R.E., “On the Theory of Dynamic Programming”, Proceedings of the National Academy of Sciences U.S.A., 38 (1952), 716–719 | DOI | MR | Zbl

[6] Kuhn H.W., “Extensive Games and Problem Information”, Ann. Math Studies, 28 (1953), 193–216 | MR | Zbl

[7] Nash J., “Non-cooperative Games”, Ann. of Math., 54 (1951), 286–295 | DOI | MR | Zbl

[8] Petrosjan L.A., Mamkina S.I., “Value for the Games with Changing Coalitional Structure”, Games Theory and Applications, 10, 2005, 141–152 | MR

[9] Shapley L.S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, v. II, Princeton University Press, Princeton, 1953, 307–317 | MR

[10] Vives X., “Nash equilibrium with strategic complementarities”, Journal of Mathematical Economics, 19:3 (1990), 305–321 | DOI | MR | Zbl

[11] Vives X., Strategic Complementarities in Multi-Stage Games, CEPR Discussion Papers 5583, C.E.P.R. Discussion Papers, 2006