Secure strategy equilibrium in Hotelling's model of spatial competition
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 38-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of spatial competition was formulated in 1929 by Harold Hotelling. He considered two firms playing a two-stage game. They choose locations in stage 1 and prices in stage 2. If locations are chosen by competitors Nash equilibrium do not always exist. For studying these cases we employ the concept of secure strategy equilibrium (SSE) which allows to solve the game of choosing prices for any locations. We examine a nontrivial particular case when prices grow if market moves from a monopoly to a duopoly.
Keywords: game theory, secure strategy equilibrium, Hotelling's model of spatial competition.
@article{MGTA_2009_1_2_a2,
     author = {Mihail Iskakov and Pavel Pavlov},
     title = {Secure strategy equilibrium in {Hotelling's} model of spatial competition},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {38--65},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a2/}
}
TY  - JOUR
AU  - Mihail Iskakov
AU  - Pavel Pavlov
TI  - Secure strategy equilibrium in Hotelling's model of spatial competition
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 38
EP  - 65
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a2/
LA  - ru
ID  - MGTA_2009_1_2_a2
ER  - 
%0 Journal Article
%A Mihail Iskakov
%A Pavel Pavlov
%T Secure strategy equilibrium in Hotelling's model of spatial competition
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 38-65
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a2/
%G ru
%F MGTA_2009_1_2_a2
Mihail Iskakov; Pavel Pavlov. Secure strategy equilibrium in Hotelling's model of spatial competition. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 38-65. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a2/