Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2009_1_2_a0, author = {Valeri Vasil'ev}, title = {One axiomatization of generalized {Owen} extension}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--13}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a0/} }
Valeri Vasil'ev. One axiomatization of generalized Owen extension. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2009_1_2_a0/
[1] R. Auman, L. Shepli, Znacheniya dlya neatomicheskikh igr, Mir, Moskva, 1977 | MR
[2] V.A. Vasilev, “Obschaya kharakteristika polinomialnykh funktsii mnozhestva”, Optimizatsiya, 14 (1974), 103–123 | Zbl
[3] J.A. Harsanyi, “A bargaining model for cooperative $n$-person games”, Contributions to the Theory of Games, v. IV, eds. A.W. Tucker and R.D. Luce, 1959, 325–355 | MR | Zbl
[4] G. Owen, “Multilinear extensions of games”, Journal of Management Sciences, 18:5 (1972), 64–79 | DOI | MR | Zbl
[5] V.A. Vasil'ev, “The Shapley functional and the polar form of homogeneous polynomial games”, Siberian Advances in Mathematics, 8:4 (1998), 109–150 | MR | Zbl
[6] V.A. Vasil'ev, “Polar forms, $p$-values, and the core”, Approximation, Optimisation and Mathematical Economics, ed. M. Lassonde, Physica-Verlag, Heidelberg-New York, 2001, 357–368 | DOI | MR | Zbl
[7] V.A. Vasil'ev, “Cores and generalized NM-solutions for some classes of cooperative games”, Russian Contributions to Game Theory and Equilibrium Theory, eds. T. Driessen, G. van der Laan, V. Vasil'ev, and E. Yanovskaya, Springer-Verlag, Berlin-Heidelberg-New York, 2006, 91–150 | DOI