Associated consistency based on utility functions of coalitions
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 87-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

A cooperative game problem is treated as a bargaining problem with claim point. For given continuous strictly increasing utility functions of coalitions, we suppose that for every partition of the player set, the result does not change after equal sacrifice w.r.t. these functions overestimation of characteristic function values for partition members. This supposition and continuity assumption lead to a special value and give an iterative method for computation its results. In particular, for equal logarithmic utility functions of coalitions, we get proportional overestimation of characteristic functions for partition members and the value is the weighted entropy solution. The anonymity assumption and the “dummy” property give the Shapley value. The weighted entropy solution follows from the positive homogeneity assumption.
Keywords: cooperative game, weighted entropy, Shapley value.
@article{MGTA_2009_1_1_a4,
     author = {Natalia Naumova},
     title = {Associated consistency based on utility functions of coalitions},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {87--195},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a4/}
}
TY  - JOUR
AU  - Natalia Naumova
TI  - Associated consistency based on utility functions of coalitions
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 87
EP  - 195
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a4/
LA  - ru
ID  - MGTA_2009_1_1_a4
ER  - 
%0 Journal Article
%A Natalia Naumova
%T Associated consistency based on utility functions of coalitions
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 87-195
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a4/
%G ru
%F MGTA_2009_1_1_a4
Natalia Naumova. Associated consistency based on utility functions of coalitions. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 87-195. http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a4/

[1] Bregman L.M., “Relaksatsionnyi metod nakhozhdeniya obschei tochki vypuklykh mnozhestv i ego primenenie dlya zadach vypuklogo programmirovaniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 7 (1967), 620–631 | MR | Zbl

[2] Bregman L.M., Naumova N.I., “Arbitrazhnye resheniya s idealnoi tochkoi, porozhdaemye sistemami funktsii”, Doklady Akademii nauk SSSR, 279:1 (1984), 16–20 | MR | Zbl

[3] Bregman L.M., Romanovskii I.V., Issledovanie operatsii i statisticheskoe modelirovanie, 3, ed. I.V. Romanovskii, Izd. Leningradskogo universiteta, 1975, 137–162 | MR

[4] Naumova N.I., “Nekotorye arbitrazhnye skhemy s idealnoi tochkoi”, Vestnik Leningradskogo universiteta. ser. Matematika. Mekhanika. Astronomiya. V. 4, 1983, no. 19, 30–36 | MR | Zbl

[5] Aczel J., Dhombres J., Functional equations in several variables with application to mathematics, information theory and to the natural and social sciences, Cambridge Univ. Press, 1989 | MR | Zbl

[6] Bregman L.M., Naumova N.I., “Goal programming solutions generated by utility functions”, Lecture Notes in Economic and Math. Systems, 510, 2002, 495–514 | DOI | MR | Zbl

[7] Csiszar I., “Why Least Squares and Maximum Entropy? An Axiomatic Approach to Inference for Linear Inverse Problems”, The Annals of Statistics, 19:4 (1991), 2032–2066 | DOI | MR | Zbl

[8] Feldman B., The proportional value of a cooperatie game, manuscript, Scudder Kemper Investments, Chicago, 1999

[9] Hamiache G., “Associated consistency and Shapley value”, International Journal of Game Theory, 30:2 (2001), 279–289 | DOI | MR | Zbl

[10] Keane M., Some topics in n-person game theory, Thesis, NorthWestern Univ. Evanston, Illinois, 1969

[11] Moulin H., Handbook of Social Choice and Welfare, Chapter 6, v. 1, eds. K.J. Arrow, A.K. Sen, K. Suzumura, Elsevier Science B.V., 2002, 290–357

[12] Naumova N.I., “Nonsymmetric equal sacrifice solutions for claim problem”, Mathematical Social Sciences, 43 (2002), 1–18 | DOI | MR | Zbl

[13] Ortmann K.M., “The proportional value of a positive cooperative game”, Mathematical Methods of Operations Research, 51 (2000), 235–248 | DOI | MR | Zbl

[14] Ruis L.M., “The Family of Least Squares Values for Transferable Utility Games”, Games and Economic Behaviour, 24, eds. F. Valenciano, J.M. Zarzuelo, 1998, 109–130 | DOI | MR