Stable joint venture stochastic model
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 16-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamic joint venture model is investigated. Through knowledge diffusion participating firms can gain core skills and technology that would be very difficult for them to obtain on their own. The stochastic evolution of the technology level of company under joint venture is known as a multivariate stochastic Ito's process. The profit of the joint venture is the expected sum of the participating firms' profits. The member firms would maximize their joint profit and share their cooperative profits according to the Shapley value. Applying the method of regularization for dynamic cooperation problem, we constructed the control in the form of special payments, paid at each time instant on the optimal trajectory. The dynamic stable solution is obtained for the stochastic joint venture dynamic model.
Keywords: differential game, cooperative solution, time-consistency of cooperative agreement, payoff distribution procedure (PDP), imputation distribution procedure (IDP), dynamic stability, strategic stability, Shapley value
Mots-clés : stable joint venture.
@article{MGTA_2009_1_1_a1,
     author = {Nickolay Zenkevich and Nickolay Kolabutin and David Yeung},
     title = {Stable joint venture stochastic model},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {16--45},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a1/}
}
TY  - JOUR
AU  - Nickolay Zenkevich
AU  - Nickolay Kolabutin
AU  - David Yeung
TI  - Stable joint venture stochastic model
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2009
SP  - 16
EP  - 45
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a1/
LA  - ru
ID  - MGTA_2009_1_1_a1
ER  - 
%0 Journal Article
%A Nickolay Zenkevich
%A Nickolay Kolabutin
%A David Yeung
%T Stable joint venture stochastic model
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2009
%P 16-45
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a1/
%G ru
%F MGTA_2009_1_1_a1
Nickolay Zenkevich; Nickolay Kolabutin; David Yeung. Stable joint venture stochastic model. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 1 (2009) no. 1, pp. 16-45. http://geodesic.mathdoc.fr/item/MGTA_2009_1_1_a1/

[1] Petrosyan L.A., “Ustoichivye resheniya differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo Universiteta, 1977, no. 19, 46–52 | Zbl

[2] Petrosyan L.A., Danilov N.N., Kooperativnye differentsialnye igry i ikh prilozheniya, Izdatelstvo Tomskogo Universiteta, Tomsk, 1982 | MR | Zbl

[3] Chistyakov S.V., “O beskoalitsionnykh differentsialnykh igrakh”, DAN SSSR, 259:5 (1981), 1052–1055 | MR

[4] Chistyakov S.V., “O postroenii silno dinamicheski ustoichivykh reshenii kooperativnykh differentsialnykh igr”, Vestnik SPbGU. ser. 1, 1:1 (1992), 50–54 | MR | Zbl

[5] Haurie A., “A note on nonzero-sum differential games with bargaining solutions”, Journal of Optimization Theory and Application, 18 (1976), 31–39 | DOI | MR | Zbl

[6] Kidland F.E., Prescott E.C., “Rules rather than decisions the inconsistency of optimal plans”, Journal of Political Economy, 85 (1977), 473–490 | DOI

[7] Nash J.F., “Non-cooperative games”, Ann. Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[8] Petrosyan L.A., Differential Games of Pursuit, World Scientific, Singapore, 1993 | MR | Zbl

[9] Petrosyan L.A., “Bargaining in Dynamic Games”, ICM Millenium Lectures on Games, eds. Petrosyan L., Yeung D.W.K., Springer-Verlag, Berlin, 2003, 139–143 | DOI | MR | Zbl

[10] Petrosjan L.A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR | Zbl

[11] Petrosjan L.A., Zenkevich N.A., Game Theory, World Scientific Publishing Co. Pte. Ltd., Singapore, 1996 | MR

[12] Petrosyan L.A., Zenkevich N.A., “Time-consistency of cooperative solutions in management”, Contributions to game theory and management, GSOM, St. Petersburg University Publ., 2007, 233–252

[13] Shapley L.S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, eds. H.W. Kuhn and A.W. Tucker, Princeton University Press, Princeton, 1953, 307–315 | MR

[14] Tolwinski B., Haurie A., Leitmann G., “Cooperative equilibria in differential games”, J. of Mathematical Analysis and Applications, 119 (1986), 182–202 | DOI | MR | Zbl

[15] Yeung D.W.K., Petrosyan L.A., “Subgame consistent cooperative solutions in stochastic differential games”, J. Optimiz. Theory and Appl., 120:3 (2004), 651–666 | DOI | MR | Zbl

[16] Yeung D.W.K., Petrosjan L.A., Cooperative Stochastic Differential Games, Springer, 2006 | MR

[17] Zenkevich N.A., Kolabutin N.V., “Quantitative Modeling of Dynamic Stable Joint Venture”, Preprint Vol. of the 11th IFAC Symposium “Computational Economics and Financial and Industrial Systems”, IFAC (Dogus University of Istanbul, Turkey), 2007, 68–74