Minimal Subspaces with Maximal Dimensioanal Diameters
Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 219-222.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Suppose that X is a compact metric space with dim X = n. Then for the n − 1 dimensional diameter dn−1(X) we have dn−1(X) > 0 and in the same time dn(X) = 0. It follows now that X contains a minimal by inclusion closed subset Y for which dn−1(Y ) = dn−1(X). Under these conditions Y is a Cantor manifold [7]. In this note we prove that every such subspace Y is even a continuum V^n. Various consequences are discussed. *2000 Mathematics Subject Classification: 54H20.
Keywords: Cantor Manifold, Dimensional Diameter
@article{MEM_2011_40_1_a21,
     author = {Todorov, Vladimir},
     title = {Minimal {Subspaces} with {Maximal} {Dimensioanal} {Diameters}},
     journal = {Mathematics and Education in Mathematics},
     pages = {219--222},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a21/}
}
TY  - JOUR
AU  - Todorov, Vladimir
TI  - Minimal Subspaces with Maximal Dimensioanal Diameters
JO  - Mathematics and Education in Mathematics
PY  - 2011
SP  - 219
EP  - 222
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a21/
LA  - en
ID  - MEM_2011_40_1_a21
ER  - 
%0 Journal Article
%A Todorov, Vladimir
%T Minimal Subspaces with Maximal Dimensioanal Diameters
%J Mathematics and Education in Mathematics
%D 2011
%P 219-222
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a21/
%G en
%F MEM_2011_40_1_a21
Todorov, Vladimir. Minimal Subspaces with Maximal Dimensioanal Diameters. Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 219-222. http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a21/