l-stable Functions and Constrained Optimization
Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 129-134.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The class of ℓ-stable at a point functions defined in [2] and being larger than the class of C1,1 functions, it is generalized from scalar to vector functions. Some properties of the ℓ-stable vector functions are proved. It is shown that constrained vector optimization problems with ℓ-stable data admit second-order conditions in terms of directional derivatives, which generalizes the results from [2] and [5]. *2000 Mathematics Subject Classification: 90C29, 90C30, 90C46, 49J52.
Keywords: Vector Optimization, L-stable Functions, Second-order Conditions
@article{MEM_2010_39_1_a9,
     author = {Ginchev, Ivan},
     title = {l-stable {Functions} and {Constrained} {Optimization}},
     journal = {Mathematics and Education in Mathematics},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a9/}
}
TY  - JOUR
AU  - Ginchev, Ivan
TI  - l-stable Functions and Constrained Optimization
JO  - Mathematics and Education in Mathematics
PY  - 2010
SP  - 129
EP  - 134
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a9/
LA  - en
ID  - MEM_2010_39_1_a9
ER  - 
%0 Journal Article
%A Ginchev, Ivan
%T l-stable Functions and Constrained Optimization
%J Mathematics and Education in Mathematics
%D 2010
%P 129-134
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a9/
%G en
%F MEM_2010_39_1_a9
Ginchev, Ivan. l-stable Functions and Constrained Optimization. Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a9/