Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 646-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

Biofilm formation can lead to multiple problems – for example, biofilms formed by the pathogenic Escherichia coli strains cause chronic urinary tract infections and gastroenteritis that can hardly be treated with antibiotics. Despite obvious priority, the key regulators and signals leading to a switch of bacterial lifestyle from free-living to attachment and biofilm formation are still not fully known. Here, an analysis was made to compare transcriptomes of the E. coli K-12 MG1655 cells growing in standard laboratory conditions and in conditions close to that inside a host organism. It was shown that upon cell transition from the free-living lifestyle to biofilms a huge rearrangement of their carbon metabolism occurred, and a key role belonged to hexuronate metabolism. At the same time, 6S RNA SsrS was dramatically overexpressed. In the second part, differential expression of genes in the E. coli K-12 MG1655 cells growing in the biofilm-forming conditions upon deletion of the yjjM gene coding for one of hexuronate regulators, YjjM (LgoR), was analysed. During this work, an analysis pipeline was optimized to allow trimming of randomly attached adaptors. The data obtained clearly indicate that small regulatory RNAs, including SsrS, play a key role in the biofilm formation by E. coli K-12, along with the YjjM protein. It was also revealed that YjjM might regulate the processes of protein biosynthesis, mRNA stabilization and antiphage defense. These observations clearly need further investigation.
@article{MBB_2024_19_a9,
     author = {A. D. Kaznadzey and A. I. Dakhnovets and T. A. Bessonova and M. N. Tutukina},
     title = {Analysis of transcriptomes of the free-living {\emph{Escherichia} coli} {K-12} {MG1655} and their biofilms},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {646--657},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a9/}
}
TY  - JOUR
AU  - A. D. Kaznadzey
AU  - A. I. Dakhnovets
AU  - T. A. Bessonova
AU  - M. N. Tutukina
TI  - Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 646
EP  - 657
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a9/
LA  - ru
ID  - MBB_2024_19_a9
ER  - 
%0 Journal Article
%A A. D. Kaznadzey
%A A. I. Dakhnovets
%A T. A. Bessonova
%A M. N. Tutukina
%T Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 646-657
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a9/
%G ru
%F MBB_2024_19_a9
A. D. Kaznadzey; A. I. Dakhnovets; T. A. Bessonova; M. N. Tutukina. Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 646-657. http://geodesic.mathdoc.fr/item/MBB_2024_19_a9/

[1] J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, “Microbial biofilms”, Annual Review of Microbiology, 49 (1995), 711–745 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.mi.49.100195.003431'>10.1146/annurev.mi.49.100195.003431</ext-link>

[2] Yu. A. Nikolaev, V. K. Plakunov, Bioplenka “Gorod mikrobov” ili analog mnogokletochnogo organizma?, Mikrobiologiya, 76:2 (2007), 149–163

[3] J. B. Kaper, J. P. Nataro, H. L. Mobley, “Pathogenic Escherichia coli”, Nature Reviews. Microbiology, 2:2 (2004), 123–140 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrmicro818'>10.1038/nrmicro818</ext-link>

[4] T. K. Wood, A. F.G. Barrios, M. Herzberg, J. Lee, “Motility influences biofilm architecture in Escherichia coli”, Applied Microbiology and Biotechnology, 72:2 (2006), 361–367 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00253-005-0263-8'>10.1007/s00253-005-0263-8</ext-link>

[5] B. M. Pruß, C. Besemann, A. Denton, A. J. Wolfe, “A Complex Transcription Network Controls the Early Stages of Biofilm Development by Escherichia coli”, Journal of bacteriology, 188:11 (2006), 3731–3739 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.01780-05'>10.1128/JB.01780-05</ext-link>

[6] C. Beloin, J. Valle, P. Latour-Lambert, P. Faure, M. Kzreminski, D. Balestrino, J. A.J. Haagensen, S. Molin, G. Prensier, B. Arbeille, J. M. Ghigo, “Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression”, Molecular Microbiology, 51:3 (2004), 659–674 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-2958.2003.03865.x'>10.1046/j.1365-2958.2003.03865.x</ext-link>

[7] L. A. Pratt, R. Kolter, “Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili”, Molecular Microbiology, 30:2 (1998), 285–293 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-2958.1998.01061.x'>10.1046/j.1365-2958.1998.01061.x</ext-link>

[8] M. Hammar, Z. Bian, S. Normark, “Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli”, Proceedings of the National Academy of Sciences of the United States of America, 93:13 (1996), 6562–6566 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.93.13.6562'>10.1073/pnas.93.13.6562</ext-link>

[9] P. Bertin, E. Terao, E. H. Lee, P. Lejeune, C. Colson, A. Danchin, E. Collatz, “The H-NS protein is involved in the biogenesis of flagella in Escherichia coli”, Journal of Bacteriology, 176:17 (1994), 5537–5540 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.93.13.6562'>10.1073/pnas.93.13.6562</ext-link>

[10] D. W. Jackson, J. W. Simecka, T. Romeo, “Catabolite repression of Escherichia coli biofilm formation”, Journal of Bacteriology, 184:12 (2002), 3406–10 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.184.12.3406-3410.2002'>10.1128/JB.184.12.3406-3410.2002</ext-link>

[11] X. Wang, J. F. Preston, T. Romeo, “The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation”, Journal of Bacteriology, 184:9 (2004), 2724–2734 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.186.9.2724-2734.2004'>10.1128/JB.186.9.2724-2734.2004</ext-link>

[12] S. Gudapaty, K. Suzuki, X. Wang, P. Babitzke, T. Romeo, “Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli”, Journal of Bacteriology, 183:20 (2001), 6017–6027 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.183.20.6017-6027.2001'>10.1128/JB.183.20.6017-6027.2001</ext-link>

[13] X. Wang, A. K. Dubey, K. Suzuki, C. S. Baker, P. Babitzke, T. Romeo, “CsrA post transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli”, Molecular Microbiology, 56:6 (2005), 1648–1663 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.2005.04648.x'>10.1111/j.1365-2958.2005.04648.x</ext-link>

[14] T. Mizuno, M. Y. Chou, M. Inouye, “A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA)”, Proceedings of the National Academy of Sciences of the United States of America, 81:7 (1984), 1966–1970 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.81.7.1966'>10.1073/pnas.81.7.1966</ext-link>

[15] K. M. Wassarman, G. Storz, “6S RNA regulates E coli RNA polymerase activity”, Cell, 101:6 (2000), 613–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0092-8674(00)80873-9'>10.1016/s0092-8674(00)80873-9</ext-link>

[16] J. H. Urban, J. Vogel, “Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation”, PLoS Biology, 6:3 (2008), e64 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.0060064'>10.1371/journal.pbio.0060064</ext-link>

[17] R. R. Kulesus, K. Diaz-Perez, E. S. Slechta, D. S. Eto, M. A. Mulvey, “Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli”, Infection and Immunity, 76:7 (2008), 3019–3026 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/IAI.00022-08'>10.1128/IAI.00022-08</ext-link>

[18] T. Jia, P. Wu, B. Liu, M. Liu, H. Mu, D. Liu, M. Huang, L. Li, Y. Wei, L. Wang, Q. Yang, Y. Liu, B. Yang, D. Huang, L. Yang, B. Liu, “The phosphate-induced small RNA EsrL promotes E coli virulence, biofilm formation, and intestinal colonization”, Science Signaling, 16 (2023), eabm0488, 767 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/scisignal.abm0488'>10.1126/scisignal.abm0488</ext-link>

[19] P. Ritzenthaler, M. Mata-Gilsinger, “Use of in vitro gene fusions to study the uxuR regulatory gene in Escherichia coli K-12: direction of transcription and regulation of its expression”, Journal of Bacteriology, 150:3 (1982), 1040–1047 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/jb.150.3.1040-1047.1982'>10.1128/jb.150.3.1040-1047.1982</ext-link>

[20] M. N. Tutukina, A. I. Dakhnovets, A. D. Kaznadzey, M. S. Gelfand, O. N. Ozoline, “Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein”, Frontiers in Molecular Biosciences, 10 (2023), 1121376 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2023.1121376'>10.3389/fmolb.2023.1121376</ext-link>

[21] J. L. Reed, T. R. Patel, K. H. Chen, A. R. Joyce, M. K. Applebee, C. D. Herring, O. T. Bui, E. M. Knight, S. S. Fong, B. O. Palsson, “Systems approach to refining genome annotation”, Proceedings of the National Academy of Sciences of the United States of America, 103:46 (2006), 17480–17484 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0603364103'>10.1073/pnas.0603364103</ext-link>

[22] T. A. Bessonova, U. D. Kuznetsova, A. T. Magkaev, M. S. Gelfand, O. N. Ozolin, M. N. Tutukina, “Svyaz metabolizma geksuronatov so sposobnostyu Escherichia coli k adgezii i formirovaniyu bioplenok”, Mikrobiologiya, 93:4 (2024), 462–467

[23] NCBI RefSeq, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/'>https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/</ext-link>

[24] FastQC, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://www.bioinformatics.babraham.ac.uk/projects/fastqc/'>https://www.bioinformatics.babraham.ac.uk/projects/fastqc/</ext-link>

[25] Trim Galore, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/'>https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/</ext-link>

[26] B. Langmead, S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2”, Nature Methods, 9 (2012), 357–359 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.1923'>10.1038/nmeth.1923</ext-link>

[27] SAMtools, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://samtools.sourceforge.net/'>https://samtools.sourceforge.net/</ext-link>

[28] Subread package, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://samtools.sourceforge.net/'>https://samtools.source-forge.net/</ext-link>

[29] M. I. Love, W. Huber, S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2”, Genome Biology, 15:550 (2014) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13059 014-0550-8'>10.1186/s13059 014-0550-8</ext-link>

[30] Z. Gu, R. Eils, M. Schlesner, “Complex heatmaps reveal patterns and correlations in multidimensional genomic data”, Bioinformatics, 32:18 (2016), 2847–2849 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btw313'>10.1093/bioinformatics/btw313</ext-link>

[31] B. Monier, A. McDermaid, J. Zhao, Q. Ma, vidger: Create rapid visualizations of RNAseq data R, R package version 1.26.0, 2024 <ext-link ext-link-type='uri' href='https://bioconductor.org/packages/release/bioc/html/vidger.html'>https://bioconductor.org/packages/release/bioc/html/vidger.html</ext-link>

[32] RColorBrewer, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://cran.r-project.org/web/packages/RColorBrewer/index.html'>https://cran.r-project.org/web/packages/RColorBrewer/index.html</ext-link>

[33] circlize, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://cran.r-project.org/web/packages/circlize/index.html'>https://cran.r-project.org/web/packages/circlize/index.html</ext-link>

[34] gplots, (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://cran.r-project.org/web/packages/gplots/index.html'>https://cran.r-project.org/web/packages/gplots/index.html</ext-link>

[35] E. Kopylova, L. Noe, H. Touzet, “SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data”, Bioinformatics, 28:24 (2012), 3211–3217 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/bts611'>10.1093/bioinformatics/bts611</ext-link>

[36] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O. Glockner, “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools”, Nucleic Acids Research, 41:D1 (2013), D590–D596 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gks1219'>10.1093/nar/gks1219</ext-link>

[37] STAR (v2. 7.11b), (data obrascheniya: 10.12.2024) <ext-link ext-link-type='uri' href='https://github.com/alexdobin/STAR'>https://github.com/alexdobin/STAR</ext-link>

[38] K. M. Wassarman, G. Storz, “6S RNA regulates E. coli RNA polymerase activity”, Cell, 101:6 (2000), 613–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0092-8674(00)80873-9'>10.1016/s0092-8674(00)80873-9</ext-link>

[39] D. Benhalevy, E. S. Bochkareva, I. Biran, E. Bibi, “Model Uracil-Rich RNAs and Membrane Protein mRNAs Interact Specifically with Cold Shock Proteins in Escherichia coli”, PLoS One, 10:7 (2015), e0134413 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0134413'>10.1371/journal.pone.0134413</ext-link>