Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a8, author = {M. B. Chaley and V. A. Kutyrkin}, title = {Typological approaches to recognizing genus and subgenus of coronaviruses by structural and non-structural genes}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {593--606}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a8/} }
TY - JOUR AU - M. B. Chaley AU - V. A. Kutyrkin TI - Typological approaches to recognizing genus and subgenus of coronaviruses by structural and non-structural genes JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 593 EP - 606 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a8/ LA - ru ID - MBB_2024_19_a8 ER -
%0 Journal Article %A M. B. Chaley %A V. A. Kutyrkin %T Typological approaches to recognizing genus and subgenus of coronaviruses by structural and non-structural genes %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 593-606 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a8/ %G ru %F MBB_2024_19_a8
M. B. Chaley; V. A. Kutyrkin. Typological approaches to recognizing genus and subgenus of coronaviruses by structural and non-structural genes. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 593-606. http://geodesic.mathdoc.fr/item/MBB_2024_19_a8/
[1] U. F. Greber, R. Bartenschlager, “Editorial: An expanded view of viruses”, FEMS Microbiol Rev, 41:1 (2017), 1–4 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/femsre/fuw044'>10.1093/femsre/fuw044</ext-link>
[2] D. K. Lvov, “Rozhdenie i razvitie virusologii istoriya izucheniya novykh i vozvraschayuschikhsya virusnykh infektsii”, Voprosy virusologii, 57:1S (2012), 5–20
[3] O. O. Koyuncu, I. B. Hogue, L. W. Enquist, “Virus infections in the nervous system”, Cell Host Microbe, 13:4 (2013), 379–393 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chom.2013.03.010'>10.1016/j.chom.2013.03.010</ext-link>
[4] J. T. Schiller, D. R. Lowy, “An introduction to virus infections and human cancer”, Recent Results Cancer Res, 217 (2021), 1–11 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-030-57362-1_1'>10.1007/978-3-030-57362-1_1</ext-link>
[5] D. A. Jackson, R. H. Symons, P. Berg, “Biochemical method for inserting new genetic information into DNA of Simian Virus 40: Circular SV40 DNA molecules containing Lambda phage genes and the galactose operon of Escherichia coli”, Proc. Natl. Acad. Sci. USA, 69:10 (1972), 2904–2909 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.69.10.2904'>10.1073/pnas.69.10.2904</ext-link>
[6] S. Nagata, H. Taira, A. Hall, L. Johnsrud, M. Streuli, J. Ecsodi, W. Boll, K. Cantell, C. Weissmann, “Synthesis in E. coli of a polypeptide with human leukocyte interferon activity”, Nature, 284:5754 (1980), 316–320 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/284316a0'>10.1038/284316a0</ext-link>
[7] S. R. Aggarwal, “What's fueling the biotech engine-2011 to 2012”, Nature Biotech, 30:12 (2012), 1191–1197 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nbt.2437'>10.1038/nbt.2437</ext-link>
[8] K. Katoh, J. Rozewicki, K. D. Yamada, “MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization”, Brief. Bioinform, 20:4 (2019), 1160–1166 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbx108'>10.1093/bib/bbx108</ext-link>
[9] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang et al, “A pneumonia outbreak associated with a new coronavirus of probable bat origin”, Nature, 579:7798 (2020), 270–273 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-020-2012'>10.1038/s41586-020-2012</ext-link>
[10] M. F. Boni, P. Lemey, X. Jiang, T. T. Lam, B. W. Perry, T. A. Castoe, A. Rambaut, D. L. Robertson, “Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic”, Nat. Microbiol, 5:11 (2020), 1408–1417 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41564-020-0771-4'>10.1038/s41564-020-0771-4</ext-link>
[11] A. A. Zayed, J. M. Wainaina, G. Dominguez-Huerta, E. Pelletier, J. Guo, M. Mohssen, F. Tian, A. A. Pratama, B. Bolduc, O. Zablocki et al, “Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome”, Science, 376:6589 (2022), 156–376162 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.abm5847'>10.1126/science.abm5847</ext-link>
[12] B. Ibrahim, D. P. McMahon, F. Hufsky, M. Beer, L. Deng, P. L. Mercier, M. Palmarini, V. Thiel, M. Marz, “A new era of virus bioinformatics”, Virus Res, 251 (2018), 86–90 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.virusres.2018.05.009'>10.1016/j.virusres.2018.05.009</ext-link>
[13] Y. Lin, Y. Qian, X. Qi, Shen B., “Databases, knowledgebases, and software tools for virus informatics”, Adv. Exp. Med. Biol, 1368 (2022), 1–19 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-981 16-8969-7_1'>10.1007/978-981 16-8969-7_1</ext-link>
[14] M. Tan, J. Xia, H. Luo, G. Meng, Z. Zhu, “Applying the digital data and the bioinformatics tools in SARS-CoV-2 research”, Comput. Struct. Biotechnol. J., 21 (2023), 4697–4705 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.csbj.2023.09.044'>10.1016/j.csbj.2023.09.044</ext-link>
[15] T. Hu, J. Li, H. Zhou, C. Li, E. C. Holmes, W. Shi, “Bioinformatics resources for SARS CoV-2 discovery and surveillance”, Brief. Bioinform, 22:2 (2021), 631–641 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbaa386'>10.1093/bib/bbaa386</ext-link>
[16] F. Vello, F. Filippini, I. Righetto, “Bioinformatics goes viral: I. Databases, phylogenetics and phylodynamics tools for boosting virus research”, Viruses, 16:9 (2024) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v16091425'>10.3390/v16091425</ext-link>
[17] A. E. Gorbalenya, S. G. Siddell, “Recognizing species as a new focus of virus research”, PLoS Pathog, 17:3 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.ppat.1009318'>10.1371/journal.ppat.1009318</ext-link>
[18] D. Hoper, C. Wylezich, M. Beer, “Loeffler 4.0: diagnostic metagenomics”, Adv. Virus Res, 99 (2017), 17–37 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/bs.aivir.2017.08.001'>10.1016/bs.aivir.2017.08.001</ext-link>
[19] A. L. Greninger, “A decade of RNA virus metagenomics is (not) enough”, Virus Res, 244 (2018), 218–229 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.virusres.2017.10.014'>10.1016/j.virusres.2017.10.014</ext-link>
[20] Y. Z. Zhang, M. Shi, E. C. Holmes, “Using metagenomics to characterize an expanding virosphere”, Cell, 172:6 (2018), 1168–1172 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2018.02.043'>10.1016/j.cell.2018.02.043</ext-link>
[21] M. J. Adams, E. J. Lefkowitz, A. M. King, B. Harrach, R. L. Harrison, N. J. Knowles, A. M. Kropinski, M. Krupovic, J. H. Kuhn, A. R. Mushegian et al, “50 years of the International Committee on Taxonomy of Viruses: progress and prospects”, Arch. Virol, 162:5 (2017), 1441–1446 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00705-016-3215-y'>10.1007/s00705-016-3215-y</ext-link>
[22] P. J. Walker, S. G. Siddell, E. J. Lefkowitz, A. R. Mushegian, E. M. Adriaenssens, P. Alfenas-Zerbini, A. J. Davison, D. M. Dempsey, B. E. Dutilh, M. L. Garcia, B. Harrach et al, “Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses (2021)”, Arch. Virol, 166:9 (2021), 2633–2648 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00705-021-05156-1'>10.1007/s00705-021-05156-1</ext-link>
[23] A. E. Gorbalenya, M. Krupovic, A. Mushegian, A. M. Kropinski, S. G. Siddell, A. Varsani, M. J. Adams, A. J. Davison, B. E. Dutilh, B. Harrach et al, “The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks”, Nat. Microbiol, 5:5 (2020), 668–674 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41564-020-0709-x'>10.1038/s41564-020-0709-x</ext-link>
[24] GenBank, (accessed 29.11.2024) ; Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW, “GenBank”, Nucleic Acids Res., 41, Database issue (2013), Article No D36-42 <ext-link ext-link-type='uri' href='https://www.ncbi.nlm.nih.gov/genbank'>https://www.ncbi.nlm.nih.gov/genbank</ext-link><ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gks1195'>10.1093/nar/gks1195</ext-link>
[25] M. B. Chalei, Zh. S. Tyulko, V. A. Kutyrkin, “Raspoznavanie vidov flavivirusov na osnove kodiruyuschikh posledovatelnostei poliproteinov”, Mat. Biol. Bioinf, 14:2 (2019), 533–542 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.533'>10.17537/2019.14.533</ext-link>
[26] M. B. Chalei, V. A. Kutyrkin, “Raspoznavanie roda koronavirusa na osnove prototipnykh shtammov”, Mat. Biol. Bioinf, 17:1 (2022), 10–27 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.10'>10.17537/2022.17.10</ext-link>
[27] M. Yu. Schelkanov, A. Yu. Popova, V. G. Dedkov, V. G. Akimkin, V. V. Maleev, “Istoriya izucheniya i sovremennaya klassifikatsiya koronavirusov (Nidovirales: Coronaviridae)”, Infektsiya i immunitet, 10:2 (2020), 221–246 <ext-link ext-link-type='doi' href='https://doi.org/10.15789/2220-7619-HOI-1412'>10.15789/2220-7619-HOI-1412</ext-link>
[28] M. Chaley, V. Kutyrkin, “Optimization of a coronavirus genus recognition procedure based on the N-gene of prototypic strains”, E3S Web of Conferences, 419 (2023) <ext-link ext-link-type='doi' href='https://doi.org/10.1051/e3sconf/202341902010'>10.1051/e3sconf/202341902010</ext-link>