Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a7, author = {S. V. Erdyneev and N. A. Arefieva and Yu. P. Dzhioev and L. A. Miroshnichenko}, title = {Analysis of prophage load and \emph{cas} genes in the genomes of {\emph{Salmonella} enterica} {Serovars} {Enteritidis,} {Typhimurium,} and {Infantis}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {565--578}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/} }
TY - JOUR AU - S. V. Erdyneev AU - N. A. Arefieva AU - Yu. P. Dzhioev AU - L. A. Miroshnichenko TI - Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 565 EP - 578 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/ LA - ru ID - MBB_2024_19_a7 ER -
%0 Journal Article %A S. V. Erdyneev %A N. A. Arefieva %A Yu. P. Dzhioev %A L. A. Miroshnichenko %T Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 565-578 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/ %G ru %F MBB_2024_19_a7
S. V. Erdyneev; N. A. Arefieva; Yu. P. Dzhioev; L. A. Miroshnichenko. Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 565-578. http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/
[1] S. M. Jajere, “A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance”, Vet World, 12:4 (2019), 504–521 <ext-link ext-link-type='doi' href='https://doi.org/10.14202/vetworld.2019.504-521'>10.14202/vetworld.2019.504-521</ext-link>
[2] M. T. El-Saadony, H. M. Salem, A. M. El-Tahan, T. A. Abd El-Mageed, S. M. Soliman, A. F. Khafaga, A. A. Swelum, A. E. Ahmed, F. A. Alshammari, M. E. Abd El-Hack, “The control of poultry salmonellosis using organic agents: an updated overview”, Poult Sci, 101:4 (2022), 101716 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.psj.2022.101716'>10.1016/j.psj.2022.101716</ext-link>
[3] S. Sh. Rozhnova, K. V. Kuleshov, A. S. Pavlova, A. N. Guseva, T. A. Kozhakhmetova, N. K. Akulova, A. T. Podkolzin, “Heterogeneity of Salmonella isolates obtained from various sources in Russia 2010-2019”, Epidemiology and infectious diseases, 25:1 (2020), 26–34 (In Russ) <ext-link ext-link-type='doi' href='https://doi.org/10.17816/EID35184'>10.17816/EID35184</ext-link>
[4] R. A. Edwards, G. J. Olsen, S. R. Maloy, “Comparative genomics of closely related salmonellae”, Trends Microbiol, 10:2 (2002), 94–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0966-842X(01)02293-4'>10.1016/S0966-842X(01)02293-4</ext-link>
[5] S. V. Owen, N. Wenner, C. L. Dulberger, E. V. Rodwell, A. Bowers-Barnard, N. Quinones-Olvera, D. J. Rigden, E. J. Rubin, E. C. Garner, M. Baym, J. C.D. Hinton, “Prophages encode phage defense systems with cognate self-immunity”, Cell Host Microbe., 29:11 (2021), 1620–1633.e8 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chom.2021.09.002'>10.1016/j.chom.2021.09.002</ext-link>
[6] A. Wahl, A. Battesti, M. Ansaldi, Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host?, Mol Microbiol., 111:2 (2019), 303–316 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/mmi.14167'>10.1111/mmi.14167</ext-link>
[7] L. Trofeit, E. Sattler, J. Kunz, F. Hilbert, “Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction”, Antibiotics (Basel), 12:3 (2023), 595 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/antibiotics12030595'>10.3390/antibiotics12030595</ext-link>
[8] Goh S., “Phage Transduction”, Methods Mol Biol, 1476 (2016), 177–185 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978 1-4939-6361-4_13'>10.1007/978 1-4939-6361-4_13</ext-link>
[9] F. Hille, H. Richter, S. P. Wong, M. Bratovic, S. Ressel, E. Charpentier, “The Biology of CRISPR-Cas: Backward and Forward”, Cell, 172:6 (2018), 1239–1259 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2017.11.032'>10.1016/j.cell.2017.11.032</ext-link>
[10] K. S. Makarova, Y. I. Wolf, J. Iranzo, S. A. Shmakov, O. S. Alkhnbashi, S. J.J. Brouns, E. Charpentier, D. Cheng, D. H. Haft, P. Horvath et al, “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants”, Nat Rev Microbiol, 18:2 (2020), 67–83 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41579-019-0299-x'>10.1038/s41579-019-0299-x</ext-link>
[11] C. Pourcel, M. Touchon, N. Villeriot, J. P. Vernadet, D. Couvin, C. Toffano-Nioche, G. Vergnaud, “CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers”, Nucleic Acids Res., 48:D1 (2020), D535–D544 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkz915'>10.1093/nar/gkz915</ext-link>
[12] M. Shakya, S. A. Ahmed, K. W. Davenport, M. C. Flynn, C. Lo, PS. G. Chain, “Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life”, Sci Rep., 10:1723 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-020-58356-1'>10.1038/s41598-020-58356-1</ext-link>
[13] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. Haeseler, R. Lanfear, “IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era”, Molecular Biology and Evolution, 37:5 (2020), 1530–1534 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msaa015'>10.1093/molbev/msaa015</ext-link>
[14] D. T. Hoang, O. Chernomor, A. Haeseler, B. Q. Minh, L. S. Vinh, “UFBoot2: Improving the Ultrafast Bootstrap Approximation”, Molecular Biology and Evolution, 35:2 (2018), 518–522 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msx28'>10.1093/molbev/msx28</ext-link>
[15] I. Letunic, P. Bork, “Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool”, Nucleic Acids Research, 52:W1 (2024), W78-W82 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkae268'>10.1093/nar/gkae268</ext-link>
[16] BLAST$^{\mathrm{\circledR}}$ Command Line Applications User Manual, NCBI, Bethesda, 2008 (accessed 24.11.2024) <ext-link ext-link-type='uri' href='https://www.ncbi.nlm.nih.gov/books/NBK279690/'>https://www.ncbi.nlm.nih.gov/books/NBK279690/</ext-link>
[17] M. Alonge, L. Lebeigle, M. Kirsche, K. Jenike, S. Ou, S. Aganezov, X. Wang, Z. B. Lippman, M. C. Schatz, S. Soyk, “Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing”, Genome Biol, 23:258 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13059-022-02823-7'>10.1186/s13059-022-02823-7</ext-link>
[18] T. Seemann, “Prokka: Rapid Prokaryotic Genome Annotation”, Bioinformatics, 30:14 (2014), 2068–2069 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btu153'>10.1093/bioinformatics/btu153</ext-link>
[19] R. Gan, F. Zhou, Y. Si, H. Yang, C. Chen, C. Ren, J. Wu, F. Zhang, “DBSCAN-SWA: An Integrated Tool for Rapid Prophage Detection and Annotation”, Front. Genet, 13 (2022), 885048 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2022.885048'>10.3389/fgene.2022.885048</ext-link>
[20] A. Canty, B. D. Ripley, A. R. Brazzale, boot: Bootstrap R (S-Plus) Functions, , 2024 (accessed 24.11.2024) <ext-link ext-link-type='uri' href='https://cran.r-project.org/web/packages/boot/index.html'>https://cran.r-project.org/web/packages/boot/index.html</ext-link>
[21] He L., St John James M., Radovcic M., Ivancic-Bace I., EL. Bolt, “Cas3 Protein-A Review of a Multi-Tasking Machine”, Genes (Basel), 11:2 (2020), 208 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/genes11020208'>10.3390/genes11020208</ext-link>
[22] Tay M., Liu S., YA. Yuan, “Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site”, Protein Sci, 24:2 (2015), 236–245 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.2609'>10.1002/pro.2609</ext-link>