Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 565-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

Salmonella enterica is a Gram-negative, facultatively anaerobic bacterium that causes intestinal infections in humans and animals. The species S. enterica includes over 2,600 serovars, among which Typhimurium, Enteritidis, and Infantis are widely distributed in the Russian Federation and often exhibit multidrug resistance to antibiotics. One promising approach to combatting such pathogens is targeted therapy using lytic phages. However, the genomic mechanisms underlying phage-bacterium interactions remain insufficiently understood. Like most bacteria, Salmonella genomes harbor prophages. Investigating prophage abundance in S. enterica genomes may be crucial for developing targeted phage therapy against this pathogen. This study conducted a bioinformatic analysis of prophage content in the genomes of three S. enterica subsp. enterica serovars: Enteritidis (n=50), Infantis (n=50), and Typhimurium (n=50) using the DBSCAN-SWA algorithm. A total of 805 prophage sequences were identified, including 274 in Enteritidis, 212 in Infantis, and 319 in Typhimurium. These sequences were classified into genera including Salmonella, Escherichia, Enterobacter, Cronobacter, Shigella, Klebsiella, and Moraxella. Additionally, cas genes associated with class 1, subtype I-E CRISPR-Cas systems were detected in all analyzed genomes. The strains were divided into two groups: 23 strains with mutations in cas genes and 127 strains without mutations. It was found that Typhimurium genomes contain more prophages compared to the other serovars. Furthermore, strains with mutations in cas genes exhibited higher prophage abundance, highlighting the role of CRISPR-Cas systems in regulating prophage dynamics and bacterial population adaptation. These findings may contribute to the development of more effective phage therapy strategies.
@article{MBB_2024_19_a7,
     author = {S. V. Erdyneev and N. A. Arefieva and Yu. P. Dzhioev and L. A. Miroshnichenko},
     title = {Analysis of prophage load and \emph{cas} genes in the genomes of {\emph{Salmonella} enterica} {Serovars} {Enteritidis,} {Typhimurium,} and {Infantis}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {565--578},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/}
}
TY  - JOUR
AU  - S. V. Erdyneev
AU  - N. A. Arefieva
AU  - Yu. P. Dzhioev
AU  - L. A. Miroshnichenko
TI  - Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 565
EP  - 578
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/
LA  - ru
ID  - MBB_2024_19_a7
ER  - 
%0 Journal Article
%A S. V. Erdyneev
%A N. A. Arefieva
%A Yu. P. Dzhioev
%A L. A. Miroshnichenko
%T Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 565-578
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/
%G ru
%F MBB_2024_19_a7
S. V. Erdyneev; N. A. Arefieva; Yu. P. Dzhioev; L. A. Miroshnichenko. Analysis of prophage load and \emph{cas} genes in the genomes of \emph{Salmonella enterica} Serovars Enteritidis, Typhimurium, and Infantis. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 565-578. http://geodesic.mathdoc.fr/item/MBB_2024_19_a7/

[1] S. M. Jajere, “A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance”, Vet World, 12:4 (2019), 504–521 <ext-link ext-link-type='doi' href='https://doi.org/10.14202/vetworld.2019.504-521'>10.14202/vetworld.2019.504-521</ext-link>

[2] M. T. El-Saadony, H. M. Salem, A. M. El-Tahan, T. A. Abd El-Mageed, S. M. Soliman, A. F. Khafaga, A. A. Swelum, A. E. Ahmed, F. A. Alshammari, M. E. Abd El-Hack, “The control of poultry salmonellosis using organic agents: an updated overview”, Poult Sci, 101:4 (2022), 101716 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.psj.2022.101716'>10.1016/j.psj.2022.101716</ext-link>

[3] S. Sh. Rozhnova, K. V. Kuleshov, A. S. Pavlova, A. N. Guseva, T. A. Kozhakhmetova, N. K. Akulova, A. T. Podkolzin, “Heterogeneity of Salmonella isolates obtained from various sources in Russia 2010-2019”, Epidemiology and infectious diseases, 25:1 (2020), 26–34 (In Russ) <ext-link ext-link-type='doi' href='https://doi.org/10.17816/EID35184'>10.17816/EID35184</ext-link>

[4] R. A. Edwards, G. J. Olsen, S. R. Maloy, “Comparative genomics of closely related salmonellae”, Trends Microbiol, 10:2 (2002), 94–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0966-842X(01)02293-4'>10.1016/S0966-842X(01)02293-4</ext-link>

[5] S. V. Owen, N. Wenner, C. L. Dulberger, E. V. Rodwell, A. Bowers-Barnard, N. Quinones-Olvera, D. J. Rigden, E. J. Rubin, E. C. Garner, M. Baym, J. C.D. Hinton, “Prophages encode phage defense systems with cognate self-immunity”, Cell Host Microbe., 29:11 (2021), 1620–1633.e8 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chom.2021.09.002'>10.1016/j.chom.2021.09.002</ext-link>

[6] A. Wahl, A. Battesti, M. Ansaldi, Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host?, Mol Microbiol., 111:2 (2019), 303–316 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/mmi.14167'>10.1111/mmi.14167</ext-link>

[7] L. Trofeit, E. Sattler, J. Kunz, F. Hilbert, “Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction”, Antibiotics (Basel), 12:3 (2023), 595 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/antibiotics12030595'>10.3390/antibiotics12030595</ext-link>

[8] Goh S., “Phage Transduction”, Methods Mol Biol, 1476 (2016), 177–185 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978 1-4939-6361-4_13'>10.1007/978 1-4939-6361-4_13</ext-link>

[9] F. Hille, H. Richter, S. P. Wong, M. Bratovic, S. Ressel, E. Charpentier, “The Biology of CRISPR-Cas: Backward and Forward”, Cell, 172:6 (2018), 1239–1259 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2017.11.032'>10.1016/j.cell.2017.11.032</ext-link>

[10] K. S. Makarova, Y. I. Wolf, J. Iranzo, S. A. Shmakov, O. S. Alkhnbashi, S. J.J. Brouns, E. Charpentier, D. Cheng, D. H. Haft, P. Horvath et al, “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants”, Nat Rev Microbiol, 18:2 (2020), 67–83 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41579-019-0299-x'>10.1038/s41579-019-0299-x</ext-link>

[11] C. Pourcel, M. Touchon, N. Villeriot, J. P. Vernadet, D. Couvin, C. Toffano-Nioche, G. Vergnaud, “CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers”, Nucleic Acids Res., 48:D1 (2020), D535–D544 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkz915'>10.1093/nar/gkz915</ext-link>

[12] M. Shakya, S. A. Ahmed, K. W. Davenport, M. C. Flynn, C. Lo, PS. G. Chain, “Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life”, Sci Rep., 10:1723 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-020-58356-1'>10.1038/s41598-020-58356-1</ext-link>

[13] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. Haeseler, R. Lanfear, “IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era”, Molecular Biology and Evolution, 37:5 (2020), 1530–1534 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msaa015'>10.1093/molbev/msaa015</ext-link>

[14] D. T. Hoang, O. Chernomor, A. Haeseler, B. Q. Minh, L. S. Vinh, “UFBoot2: Improving the Ultrafast Bootstrap Approximation”, Molecular Biology and Evolution, 35:2 (2018), 518–522 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msx28'>10.1093/molbev/msx28</ext-link>

[15] I. Letunic, P. Bork, “Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool”, Nucleic Acids Research, 52:W1 (2024), W78-W82 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkae268'>10.1093/nar/gkae268</ext-link>

[16] BLAST$^{\mathrm{\circledR}}$ Command Line Applications User Manual, NCBI, Bethesda, 2008 (accessed 24.11.2024) <ext-link ext-link-type='uri' href='https://www.ncbi.nlm.nih.gov/books/NBK279690/'>https://www.ncbi.nlm.nih.gov/books/NBK279690/</ext-link>

[17] M. Alonge, L. Lebeigle, M. Kirsche, K. Jenike, S. Ou, S. Aganezov, X. Wang, Z. B. Lippman, M. C. Schatz, S. Soyk, “Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing”, Genome Biol, 23:258 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13059-022-02823-7'>10.1186/s13059-022-02823-7</ext-link>

[18] T. Seemann, “Prokka: Rapid Prokaryotic Genome Annotation”, Bioinformatics, 30:14 (2014), 2068–2069 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btu153'>10.1093/bioinformatics/btu153</ext-link>

[19] R. Gan, F. Zhou, Y. Si, H. Yang, C. Chen, C. Ren, J. Wu, F. Zhang, “DBSCAN-SWA: An Integrated Tool for Rapid Prophage Detection and Annotation”, Front. Genet, 13 (2022), 885048 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2022.885048'>10.3389/fgene.2022.885048</ext-link>

[20] A. Canty, B. D. Ripley, A. R. Brazzale, boot: Bootstrap R (S-Plus) Functions, , 2024 (accessed 24.11.2024) <ext-link ext-link-type='uri' href='https://cran.r-project.org/web/packages/boot/index.html'>https://cran.r-project.org/web/packages/boot/index.html</ext-link>

[21] He L., St John James M., Radovcic M., Ivancic-Bace I., EL. Bolt, “Cas3 Protein-A Review of a Multi-Tasking Machine”, Genes (Basel), 11:2 (2020), 208 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/genes11020208'>10.3390/genes11020208</ext-link>

[22] Tay M., Liu S., YA. Yuan, “Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site”, Protein Sci, 24:2 (2015), 236–245 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.2609'>10.1002/pro.2609</ext-link>