Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a6, author = {K. S. Shavkunov and N. Yu. Markelova and O. V. Alikina and O. A. Glazunova and V. V. Panyukov and N. P. Kolzhetsov and S. S. Kiselev and O. N. Ozoline}, title = {Products of abortive transcription can prime synthesis of chimeric oligonucleotides}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {453--471}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a6/} }
TY - JOUR AU - K. S. Shavkunov AU - N. Yu. Markelova AU - O. V. Alikina AU - O. A. Glazunova AU - V. V. Panyukov AU - N. P. Kolzhetsov AU - S. S. Kiselev AU - O. N. Ozoline TI - Products of abortive transcription can prime synthesis of chimeric oligonucleotides JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 453 EP - 471 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a6/ LA - en ID - MBB_2024_19_a6 ER -
%0 Journal Article %A K. S. Shavkunov %A N. Yu. Markelova %A O. V. Alikina %A O. A. Glazunova %A V. V. Panyukov %A N. P. Kolzhetsov %A S. S. Kiselev %A O. N. Ozoline %T Products of abortive transcription can prime synthesis of chimeric oligonucleotides %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 453-471 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a6/ %G en %F MBB_2024_19_a6
K. S. Shavkunov; N. Yu. Markelova; O. V. Alikina; O. A. Glazunova; V. V. Panyukov; N. P. Kolzhetsov; S. S. Kiselev; O. N. Ozoline. Products of abortive transcription can prime synthesis of chimeric oligonucleotides. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 453-471. http://geodesic.mathdoc.fr/item/MBB_2024_19_a6/
[1] M. Lybecker, I. Bilusic, R. Raghavan, “Pervasive transcription: detecting functional RNAs in bacteria”, Transcription, 5 (2014), e944039 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/21541272.2014.944039'>10.4161/21541272.2014.944039</ext-link>
[2] E. Soltani-Fard, S. Taghvimi, Z. Abedi Kichi, C. Weber, Z. Shabaninejad, M. Taheri-Anganeh, S. Hossein Khatami, P. Mousavi, A. Movahedpour, L. Natarelli, “Insights into the function of regulatory RNAs in bacteria and archaea”, Int. J. Transl. Med, 1 (2021), 403–423 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijtm1030024'>10.3390/ijtm1030024</ext-link>
[3] F. A. Lagunas-Rangel, “Role of circular RNAs in DNA repair”, RNA Biol, 21 (2024), 149–161 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2024.2429945'>10.1080/15476286.2024.2429945</ext-link>
[4] A. Dance, “Circular logic: understanding RNA's strangest form yet”, Nature, 635 (2024), 511–513 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/d41586-024-03683-w'>10.1038/d41586-024-03683-w</ext-link>
[5] A. L. Mamuye, E. Merelli, L. Tesei, A graph grammar for modelling RNA folding, 2016, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1612.01639'>1612.01639</ext-link><ext-link ext-link-type='doi' href='https://doi.org/10.48550/arXiv.1612.01639'>10.48550/arXiv.1612.01639</ext-link>
[6] H. Wu, H. Yu, Y. Zhang, B. Yang, W. Sun, L. Ren, Y. Li, Q. Li, B. Liu, Y. Ding, H. Zhang, “Unveiling RNA structure-mediated regulations of RNA stability in wheat”, Nat. Commun, 15 (2024), 10042 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-024-54172-7'>10.1038/s41467-024-54172-7</ext-link>
[7] S. E. Harris, M. S. Alexis, G. Giri, F. F. Cavazos Jr, Y. Hu, J. Murn, M. M. Aleman, C. B. Burge, D. Dominguez, “Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro”, Nat. Commun, 15 (2024), 8400 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-024-52231-7'>10.1038/s41467-024-52231-7</ext-link>
[8] T. C. Nguyen, K. Zaleta-Rivera, X. Huang, X. Dai, S. Zhong, “RNA. Action through Interactions”, Trends Genet, 34 (2018), 867–882 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tig.2018.08.001'>10.1016/j.tig.2018.08.001</ext-link>
[9] M. Zhou, M. S. Xiao, Z. G. Li, C. Huang, “New progresses of circular RNA biology: from nuclear export to degradation”, RNA Biol, 18 (2021), 1365–1373 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2020.1853977'>10.1080/15476286.2020.1853977</ext-link>
[10] N. Innocenti, H. S. Nguyen, A. F. d'Herouel, E. Aurell, An observation of circular RNAs in bacterial RNA-seq data, 2016, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1606.04576'>1606.04576</ext-link><ext-link ext-link-type='doi' href='https://doi.org/10.48550/arXiv.1606.04576'>10.48550/arXiv.1606.04576</ext-link>
[11] K. S. Shavkunov, N. Y. Markelova, O. A. Glazunova, N. P. Kolzhetsov, V. V. Panyukov, O. N. Ozoline, “The fate and functionality of alien tRNA fragments in culturing medium and cells of Escherichia coli”, Int. J. Mol. Sci, 24 (2023), 12960 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms241612960'>10.3390/ijms241612960</ext-link>
[12] M. C. Carrier, D. Lalaouna, E. Masse, “Broadening the definition of bacterial small RNAs: characteristics and mechanisms of action”, Annu. Rev. Microbiol, 72 (2018), 141–161 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-micro-090817-062607'>10.1146/annurev-micro-090817-062607</ext-link>
[13] E. G.H. Wagner, P. Romby, “Small RNAs in bacteria and archaea: who they are, what they do, and how they do it”, Adv. Genet, 90 (2015), 133–208 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/bs.adgen.2015.05.001'>10.1016/bs.adgen.2015.05.001</ext-link>
[14] M. Miyakoshi, Y. Chao, J. Vogel, “Regulatory small RNAs from the 3' regions of bacterial mRNAs”, Curr. Opin. Microbiol, 24 (2015), 132–139 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.mib.2015.01.013'>10.1016/j.mib.2015.01.013</ext-link>
[15] Y. Chao, J. Vogel, “A 3' UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response”, Mol. Cell, 61 (2016), 352–363 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2015.12.023'>10.1016/j.molcel.2015.12.023</ext-link>
[16] G. X. Ren, X. P. Guo, Y. C. Sun, “Regulatory 3'-untranslated regions of bacterial mRNAs”, Front. Microbiol, 8 (2017), 1276 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2017.01276'>10.3389/fmicb.2017.01276</ext-link>
[17] A. C. Manna, S. Kim, L. Cengher, A. Corvaglia, S. Leo, P. Francois, A. L. Cheung, “Small RNA teg49 is derived from a sarA transcript and regulates virulence genes independent of SarA in Staphylococcus aureus”, Infect. Immun, 86 (2018), e00635-17 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/IAI.00635-17'>10.1128/IAI.00635-17</ext-link>
[18] D. Lalaouna, M. C. Carrier, S. Semsey, J. S. Brouard, J. Wang, J. T. Wade, E. Masse, “A 3' external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise”, Mol. Cell, 58 (2015), 393–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2015.03.013'>10.1016/j.molcel.2015.03.013</ext-link>
[19] J. Shepherd, M. Ibba, “Bacterial transfer RNAs”, FEMS Microbiol. Rev, 39 (2015), 280–300 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/femsre/fuv004'>10.1093/femsre/fuv004</ext-link>
[20] K. W. Diebel, K. Zhou, A. B. Clarke, L. T. Bemis, “Beyond the ribosome: extra-translational functions of tRNA fragments”, Biomark. Insights., 11, Suppl. 1 (2016), 1–8 <ext-link ext-link-type='doi' href='https://doi.org/10.4137/BMI.S35904'>10.4137/BMI.S35904</ext-link>
[21] J. Hou, Q. Li, J. Wang, W. Lu, “tRFs and tRNA halves: novel cellular defenders in multiple biological processes”, Curr. Issues Mol. Biol, 44 (2022), 5949–5962 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cimb44120405'>10.3390/cimb44120405</ext-link>
[22] S. George, M. Rafi, M. Aldarmaki, M. ElSiddig, M. Al Nuaimi, K. M.A. Amiri, “tRNA derived small RNAs small players with big roles”, Front. Genet, 13 (2022), 997780 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2022.997780'>10.3389/fgene.2022.997780</ext-link>
[23] Z. Li, B. A. Stanton, “Transfer RNA-derived fragments, the underappreciated regulatory small RNAs in microbial pathogenesis”, Front. Microbiol, 12 (2021), 687632 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2021.687632'>10.3389/fmicb.2021.687632</ext-link>
[24] B. Ren, X. Wang, J. Duan, J. Ma, “Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation”, Science, 365 (2019), 919–922 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.aav8907'>10.1126/science.aav8907</ext-link>
[25] I. Morad, D. Chapman-Shimshoni, M. Amitsur, G. Kaufmann, “Functional expression and properties of the tRNA(Lys)-specific core anticodon nuclease encoded by Escherichia coli prrC”, J. Biol. Chem, 268 (1993), 26842–26849 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0021-9258(19)74188-X'>10.1016/S0021-9258(19)74188-X</ext-link>
[26] K. Tomita, T. Ogawa, T. Uozumi, K. Watanabe, H. Masaki, “A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops”, Proc. Natl. Acad. Sci. USA, 97 (2000), 8278–8283 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.140213797'>10.1073/pnas.140213797</ext-link>
[27] K. Y. Cao, Y. Pan, T. M. Yan, P. Tao, Y. Xiao, Z. H. Jiang, “Antitumor activities of tRNA derived fragments and tRNA halves from non-pathogenic Escherichia coli strains on colorectal cancer and their structure-activity relationship”, mSystems, 7 (2022), e00164-22 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/msystems.00164-22'>10.1128/msystems.00164-22</ext-link>
[28] E. G. Wagner, R. W. Simons, “Antisense RNA control in bacteria, phages, and plasmids”, Annu. Rev. Microbiol, 48 (1994), 713–742 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.mi.48.100194.003433'>10.1146/annurev.mi.48.100194.003433</ext-link>
[29] Y. Zhang, X. S. Liu, Q. R. Liu, L. Wei, “Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species”, Nucleic Acids Res, 34 (2006), 3465–3475 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkl473'>10.1093/nar/gkl473</ext-link>
[30] M. N. Tutukina, K. S. Shavkunov, I. S. Masulis, O. N. Ozoline, “Antisense transcription within the hns locus of Escherichia coli”, Mol. Biol, 44 (2010), 439–447 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S002689331003012X'>10.1134/S002689331003012X</ext-link>
[31] M. N. Tutukina, A. I. Dakhnovets, A. D. Kaznadzey, M. S. Gelfand, O. N. Ozoline, “Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein”, Front. Mol. Biosci, 10 (2023), 1121376 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2023.1121376'>10.3389/fmolb.2023.1121376</ext-link>
[32] S. Schwenk, K. B. Arnvig, “Regulatory RNA in Mycobacterium tuberculosis, back to basics”, Pathog. Dis, 76 (2018), fty035 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/femspd/fty035'>10.1093/femspd/fty035</ext-link>
[33] I. Coban, J. P. Lamping, A. G. Hirsch, S. Wasilewski, O. Shomroni, O. Giesbrecht, G. Salinas, H. Krebber, “dsRNA formation leads to preferential nuclear export and gene expression”, Nature, 631 (2024), 432–438 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-024-07576-w'>10.1038/s41586-024-07576-w</ext-link>
[34] J. Hor, G. Matera, J. Vogel, S. Gottesman, G. Storz, “Trans-acting small RNAs and their effects on gene expression in Escherichia coli and Salmonella enterica”, EcoSal Plus, 9 (2020), 0030–2019 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/ecosalplus.ESP-0030-2019'>10.1128/ecosalplus.ESP-0030-2019</ext-link>
[35] P. Boudry, E. Piattelli, E. Drouineau, J. Peltier, A. Boutserin, M. Lejars, E. Hajnsdorf, M. Monot, B. Dupuy, I. Martin-Verstraete et al, “Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen Clostridioides difficile”, RNA Biol, 18 (2021), 1931–1952 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2021.1882180'>10.1080/15476286.2021.1882180</ext-link>
[36] P. Mandin, S. Gottesman, “Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA”, EMBO J., 29 (2010), 3094–3107 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/emboj.2010.179'>10.1038/emboj.2010.179</ext-link>
[37] A. Ghosal, B. B. Upadhyaya, J. V. Fritz, A. Heintz-Buschart, M. S. Desai, D. Yusuf, D. Huang, A. Baumuratov, K. Wang, D. Galas, P. Wilmes, “The extracellular RNA complement of Escherichia coli”, Microbiologyopen, 4 (2015), 252–266 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/mbo3.235'>10.1002/mbo3.235</ext-link>
[38] K. Koeppen, T. H. Hampton, M. Jarek, M. Scharfe, S. A. Gerber, D. W. Mielcarz, E. G. Demers, E. L. Dolben, J. H. Hammond, D. A. Hogan, B. A. Stanton, “A novel mechanism of host pathogen interaction through sRNA in bacterial outer membrane vesicles”, PLoS Pathog, 12 (2016), e1005672 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.ppat.1005672'>10.1371/journal.ppat.1005672</ext-link>
[39] C. Blenkiron, D. Simonov, A. Muthukaruppan, P. Tsai, P. Dauros, S. Green, J. Hong, C. G. Print, S. Swift, A. R. Phillips, “Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA”, PLoS One, 11 (2016), e0160440 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0160440'>10.1371/journal.pone.0160440</ext-link>
[40] O. V. Alikina, O. A. Glazunova, A. A. Bykov, S. S. Kiselev, M. N. Tutukina, K. S. Shavkunov, O. N. Ozoline, “A cohabiting bacterium alters the spectrum of short RNAs secreted by Escherichia coli”, FEMS Microbiol. Lett, 365 (2018), fny262 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/femsle/fny262'>10.1093/femsle/fny262</ext-link>
[41] T. Pita, J. R. Feliciano, J. H. Leitao, “Extracellular RNAs in bacterial infections: from emerging key players on host-pathogen interactions to exploitable biomarkers and therapeutic targets”, Int. J. Mol. Sci, 21 (2020), 9634 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms21249634'>10.3390/ijms21249634</ext-link>
[42] A. Obregon-Henao, M. A. Duque-Correa, M. Rojas, L. F. Garcia, P. J. Brennan, B. L. Ortiz, J. T. Belisle, “Stable extracellular RNA fragments of Mycobacterium tuberculosis induce early apoptosis in human monocytes via a caspase-8 dependent mechanism”, PLoS One, 7 (2012), e29970 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0029970'>10.1371/journal.pone.0029970</ext-link>
[43] N. Markelova, O. Glazunova, O. Alikina, V. Panyukov, K. Shavkunov, O. Ozoline, “Suppression of Escherichia coli growth dynamics via RNAs secreted by competing bacteria”, Front. Mol. Biosci, 8 (2021), 609979 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2021.609979'>10.3389/fmolb.2021.609979</ext-link>
[44] H. J. Lee, S. H. Hong, “Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing”, FEMS Microbiol. Lett, 326 (2012), 131–136 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1574 6968.2011.02441.x'>10.1111/j.1574 6968.2011.02441.x</ext-link>
[45] I. Diallo, J. Ho, D. Lalaouna, E. Masse, P. Provost, “RNA sequencing unveils very small RNAs with potential regulatory functions in bacteria”, Front. Mol. Biosci, 9 (2022), 914991 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2022.914991'>10.3389/fmolb.2022.914991</ext-link>
[46] A. Bykov, O. Glazunova, O. Alikina, N. Sukharicheva, I. Masulis, K. Shavkunov, O. Ozoline, “Excessive promoters as silencers of genes horizontally acquired by Escherichia coli”, Front. Mol. Biosci, 7 (2020), 28 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2020.00028'>10.3389/fmolb.2020.00028</ext-link>
[47] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech, J. Chilton, D. Clements, N. Coraor, B. A. Gruning et al, “The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update”, Nucleic Acids Res., 46:W1 (2018), W537-W544 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gky379'>10.1093/nar/gky379</ext-link>
[48] V. V. Panyukov, S. S. Kiselev, K. S. Shavkunov, I. S. Masulis, O. N. Ozoline, “Mixed promoter islands as genomic regions with specific structural and functional properties”, Math. Biol.. Bioinf, 8 (2013), 432–448 (In Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2013.8.432'>10.17537/2013.8.432</ext-link>
[49] V. V. Panyukov, O. N. Ozoline, “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS One, 8 (2013), e62601 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0062601'>10.1371/journal.pone.0062601</ext-link>
[50] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res, 32 (2004), 1792–1797 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkh340'>10.1093/nar/gkh340</ext-link>
[51] J. S. Reuter, D. H. Mathews, “RNAstructure: software for RNA secondary structure prediction and analysis”, BMC Bioinformatics, 11 (2010), 129 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2105-11-129'>10.1186/1471-2105-11-129</ext-link>
[52] S. G. Wolf, D. Frenkiel, T. Arad, S. E. Finkel, R. Kolter, A. Minsky, “DNA protection by stress-induced biocrystallization”, Nature, 400 (1999), 83–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/21918'>10.1038/21918</ext-link>
[53] A. A. Bykov, K. S. Shavkunov, V. V. Panyukov, O. N. Ozoline, “Bacterial nucleoid protein Dps binds structured RNA molecules”, Math. Biol. Bioinf., 12, Suppl. (2017), t1–t11 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.t1'>10.17537/2017.12.t1</ext-link>
[54] Ghatak, P., K. Karmakar, S. Kasetty, D. Chatterji, “Unveiling the role of Dps in the organization of mycobacterial nucleoid”, PLoS One, 6 (2011), e16019 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0016019'>10.1371/journal.pone.0016019</ext-link>
[55] R. Janissen, M. M.A. Arens, N. N. Vtyurina, Z. Rivai, N. D. Sunday, B. Eslami-Mossallam, A. A. Gritsenko, L. Laan, D. de Ridder, I. Artsimovitch, N. H. Dekker, E. A. Abbondanzieri, A. S. Meyer, “Global DNA compaction in stationary-phase bacteria does not affect transcription”, Cell, 174 (2018), 1188–1199 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2018.06.049'>10.1016/j.cell.2018.06.049</ext-link>
[56] C. Park, Y. Jin, Y. J. Kim, H. Jeong, B. L. Seong, “RNA-binding as chaperones of DNA binding proteins from starved cells”, Biochem. Biophys. Res. Commun, 524 (2020), 484–489 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbrc.2020.01.121'>10.1016/j.bbrc.2020.01.121</ext-link>
[57] A. Lacqua, O. Wanner, T. Colangelo, M. G. Martinotti, P. Landini, “Emergence of biofilm forming subpopulations upon exposure of Escherichia coli to environmental bacteriophages”, Appl. Environ. Microbiol, 72 (2006), 956–959 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/AEM.72.1.956-959.2006'>10.1128/AEM.72.1.956-959.2006</ext-link>
[58] J. R. Theoret, K. K. Cooper, B. Zekarias, K. L. Roland, B. F. Law, R. Curtiss 3rd, L.A. Joens, “The Campylobacter jejuni Dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination”, Clin. Vaccine Immunol, 19 (2012), 1426–1431 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/CVI.00151-12'>10.1128/CVI.00151-12</ext-link>
[59] B. Pang, W. Hong, N. D. Kock, W. E. Swords, “Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo”, Front. Cell Infect. Microbiol, 2 (2012), 58 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcimb.2012.00058'>10.3389/fcimb.2012.00058</ext-link>
[60] S. Leroy, I. Lebert, C. Andant, P. Micheau, R. Talon, “Investigating extracellular DNA release in Staphylococcus xylosus biofilm in vitro”, Microorganisms, 9 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/microorganisms9112192'>10.3390/microorganisms9112192</ext-link>
[61] M. Kawano, A. A. Reynolds, J. Miranda-Rios, G. Storz, “Detection of 5'- and 3'-UTR derived small RNAs and cis-encoded antisense RNAs in Escherichia coli”, Nucleic Acids Res, 33 (2005), 1040–1050 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gki256'>10.1093/nar/gki256</ext-link>
[62] K. M. Wassarman, G. Storz, “6S RNA regulates E coli RNA polymerase activity”, Cell, 101 (2000), 613–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0092-8674(00)80873-9'>10.1016/s0092-8674(00)80873-9</ext-link>
[63] K. Perumal, R. Reddy, “The 3' end formation in small RNAs”, Gene Expr, 10 (2002), 59–78
[64] A. Depaix, E. Grudzien-Nogalska, B. Fedorczyk, M. Kiledjian, J. Jemielity, J. Kowalska, “Preparation of RNAs with non-canonical 5' ends using novel di- and trinucleotide reagents for co-transcriptional capping”, Front. Mol. Biosci, 9 (2022), 854170 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2022.854170'>10.3389/fmolb.2022.854170</ext-link>
[65] R. K. Vishwakarma, K. Brodolin, “The subunit-remodeling factors: an emerging paradigms of transcription regulation”, Front. Microbiol, 11 (2020), 1798 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2020.01798'>10.3389/fmicb.2020.01798</ext-link>
[66] L. Pallesen, O. Madsen, P. Klemm, “Regulation of the phase switch controlling expression of type 1 fimbriae in Escherichia coli”, Mol. Microbiol, 3 (1989), 925–931 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.1989.tb00242.x'>10.1111/j.1365-2958.1989.tb00242.x</ext-link>
[67] J. Greenblatt, T. F. Mah, P. Legault, J. Mogridge, J. Li, L. E. Kay, “Structure and mechanism in transcriptional antitermination by the bacteriophage $\lambda$ N protein”, Cold Spring Harb. Symp. Quant. Biol, 63 (1998), 327–336 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/sqb.1998.63.327'>10.1101/sqb.1998.63.327</ext-link>
[68] Q. Huang, X. Cheng, M. K. Cheung, S. S. Kiselev, O. N. Ozoline, H. S. Kwan, “High-density transcriptional initiation signals underline genomic islands in bacteria”, PLoS One, 7 (2012), e33759 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0033759'>10.1371/journal.pone.0033759</ext-link>
[69] S. R. Goldman, J. S. Sharp, I. O. Vvedenskaya, J. Livny, S. L. Dove, B. E. Nickels, “NanoRNAs prime transcription initiation in vivo”, Mol. Cell, 42 (2011), 817–825 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2011.06.005'>10.1016/j.molcel.2011.06.005</ext-link>