Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a4, author = {O. Y. Kiryanova and S. S. Kiselev and V. V. Panyukov and N. A. Nikulin and N. N. Nazipova and A. V. Chemeris and A. A. Zimin}, title = {Using multiplex virtual {PCR} for genetic barcoding of {\emph{Tequatrovirus}} bacteriophages}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {369--392}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a4/} }
TY - JOUR AU - O. Y. Kiryanova AU - S. S. Kiselev AU - V. V. Panyukov AU - N. A. Nikulin AU - N. N. Nazipova AU - A. V. Chemeris AU - A. A. Zimin TI - Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 369 EP - 392 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a4/ LA - ru ID - MBB_2024_19_a4 ER -
%0 Journal Article %A O. Y. Kiryanova %A S. S. Kiselev %A V. V. Panyukov %A N. A. Nikulin %A N. N. Nazipova %A A. V. Chemeris %A A. A. Zimin %T Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 369-392 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a4/ %G ru %F MBB_2024_19_a4
O. Y. Kiryanova; S. S. Kiselev; V. V. Panyukov; N. A. Nikulin; N. N. Nazipova; A. V. Chemeris; A. A. Zimin. Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 369-392. http://geodesic.mathdoc.fr/item/MBB_2024_19_a4/
[1] C. L. Ventola, “The antibiotic resistance crisis: part 1: causes and threats”, Pharmacy and Therapeutics, 40:4 (2015), 277–283
[2] C. L. Ventola, “The antibiotic resistance crisis: part 2: management strategies and new agents”, Pharmacy and Therapeutics, 40:5 (2015), 344–352
[3] Gorski A., Miedzybrodzki R., Weber-Dabrowska B., Fortuna W., Letkiewicz S., Rogoz P., E. Jonczyk-Matysiak, K. Dabrowska, J. Majewska, J. Borysowski, “Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases”, Front. Microbiol, 7 (2016), 1515 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2016.01515'>10.3389/fmicb.2016.01515</ext-link>
[4] Z. Golkar, O. Bagasra, D. G. Pace, “Bacteriophage therapy: a potential solution for the antibiotic resistance crisis”, J. Infect. Dev. Ctries, 8:2 (2014), 129–136 <ext-link ext-link-type='doi' href='https://doi.org/10.3855/jidc.3573'>10.3855/jidc.3573</ext-link>
[5] N. Nikulin, A. Nikulina, A. Zimin, R. Aminov, “Phages for treatment of Escherichia coli infections”, Prog. Mol. Biol. Transl. Sci, 200 (2023), 171–206 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/bs.pmbts.2023.03.011'>10.1016/bs.pmbts.2023.03.011</ext-link>
[6] M. Lusiak-Szelachowska, R. Miedzybrodzki, Z. Drulis-Kawa, K. Cater, P. Knezevic, C. Winogradow, K. Amaro, E. Jonczyk-Matysiak, B. Weber-Dabrowska, J. Rekas et al, “Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far”, J. Biomed. Sci, 29 (2022), 23 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12929-022-00806-1'>10.1186/s12929-022-00806-1</ext-link>
[7] Romero-Calle D., Guimaraes Benevides R., Goes-Neto A., Billington C., “Bacteriophages as alternatives to antibiotics in clinical care”, Antibiotics, 8 (2019), 23 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/antibiotics8030138'>10.3390/antibiotics8030138</ext-link>
[8] E. H. Hankin, “L'action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera”, Annales de l'Institut Pasteur, 10 (1896), 511–523 (In French)
[9] N. F. Gamaleya, “Bakterioliziny fermenty, razrushayuschie bakterii”, Russkii arkhiv patologii, 1898, no. 6, 607–613
[10] F. W. Twort, “An investigation on the nature of ultra-microscopic viruses”, Lancet, 186 (1915), 1241–1243 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(01)20383-3'>10.1016/S0140-6736(01)20383-3</ext-link>
[11] F. d'Herelle, “Sur un microbe invisible antagoniste des bacilles dysenteriques”, C. R. Hebd. Seances Acad. Sci, 165:11 (1917), 373–375 (In French)
[12] K. Moelling, F. Broecker, C. Willy, “A wake-up call: we need phage therapy now”, Viruses, 10 (2018), 688 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v10120688'>10.3390/v10120688</ext-link>
[13] S. Abedon, K. Danis-Wlodarczyk, D. Alves, Phage therapy in the 21st century: is there modern, clinical evidence of phage-mediated efficacy?, Pharmaceuticals, 14 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ph14111157'>10.3390/ph14111157</ext-link>
[14] M. Kamel, S. Aleya, M. Alsubih, L. Aleya, “Microbiome dynamics: a paradigm shift in combatting infectious diseases”, J. Pers. Med, 14:2 (2024) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/jpm14020217'>10.3390/jpm14020217</ext-link>
[15] C. Chang, X. Yu, W. Guo, C. Guo, X. Guo, Q. Li, Y. Zhu, “Bacteriophage-mediated control of biofilm: a promising new dawn for the future”, Front. Microbiol, 13 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2022.825828'>10.3389/fmicb.2022.825828</ext-link>
[16] C. R. Merril, B. Biswas, R. Carlton, N. C. Jensen, G. J. Creed, S. Zullo, S. Adhya, “Long circulating bacteriophage as antibacterial agents”, Proc. Natl Acad. Sci. USA, 93 (1996), 3188–3192 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.93.8.3188'>10.1073/pnas.93.8.3188</ext-link>
[17] A. A. Zimin, A. M. Butanaev, N. E. Suzina, N. E. Skoblikov, L. R. Sakhabutdinova, N. V. Prisyazhnaya, S. I. Kononenko, A. G. Kaschaev, “Konstruirovanie mutantov bakteriofaga T4 so snizhennoi antigennostyu”, Nauchnyi zhurnal KubGAU, 2017, no. 134(10), 34 <ext-link ext-link-type='doi' href='https://doi.org/10.21515/1990-4665-134-034'>10.21515/1990-4665-134-034</ext-link>
[18] N. A. Nikulin, S. I. Kononenko, A. G. Koschaev, A. A. Zimin, “Konstruirovanie terapevticheskikh fagovykh kokteilei na osnove bakteriofagov: preimuschestva i nedostatki”, Nauchnyi zhurnal KubGAU, 2017, no. 133(9), 63 <ext-link ext-link-type='doi' href='https://doi.org/10.21515/1990-4665-133-063'>10.21515/1990-4665-133-063</ext-link>
[19] O. Yu. Kiryanova, I. I. Kiryanov, B. R. Kuluev, R. R. Garafutdinov, A. V. Chemeris, I. M. Gubaidullin, “Multipleksnyi in silico RAPD-analiz dlya barkodirovaniya genomov”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 208–229 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.208'>10.17537/2022.17.208</ext-link>
[20] O. Yu. Kiryanova, R. R. Garafutdinov, D. A. Chemeris, G. A. Geraschenkov, Yu. R. Giniyatov, I. M. Gubaidullin, A. V. Chemeris, “Polimorfizm DNK sobak (Canis familiaris L). VI. Genomnoe in silico shtrikhkodirovanie sobachikh genomov i genomov ikh dikikh sorodichei”, Biomika, 14:1 (2022), 59–67 <ext-link ext-link-type='doi' href='https://doi.org/10.31301/2221-6197.bmcs.2022-4'>10.31301/2221-6197.bmcs.2022-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4375806'>4375806</ext-link>
[21] O. Yu. Kiryanova, B. R. Kuluev, A. R. Kuluev, I. S. Mardanshin, I. M. Gubaidullin, A. V. Chemeris, “Multipleksnyi in silico RAPD-analiz ryada rodstvennykh rastenii s otlichayuschimisya razmerami genomov i perspektivy takogo podkhoda dlya DNK pasportizatsii sortov selskokhozyaistvennykh rastenii”, Biomika, 12:2 (2020), 194–210 <ext-link ext-link-type='doi' href='https://doi.org/10.31301/2221-6197.bmcs.2020-10'>10.31301/2221-6197.bmcs.2020-10</ext-link>
[22] N. A. Nikulin, A. A. Zimin, “Influence of non-canonical DNA bases on the genomic diversity of Tevenvirinae”, Front. Microbiol, 12 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2021.632686'>10.3389/fmicb.2021.632686</ext-link>
[23] T. Brettin, J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R. Overbeek, B. Parrello, G. D. Pusch, M. Shukla et al, “RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes”, Sci. Rep, 5 (2015), 8365 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep08365'>10.1038/srep08365</ext-link>
[24] A. R. Wattam, J. J. Davis, R. Assaf, S. Boisvert, T. Brettin, C. Bun, N. Conrad, E. M. Dietrich, T. Disz, J. L. Gabbard et al, “Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center”, Nucleic Acids Res., 45:D1 (2017), D535-D542 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkw1017'>10.1093/nar/gkw1017</ext-link>
[25] D. M. Kristensen, L. Kannan, M. K. Coleman, Y. I. Wolf, A. Sorokin, E. V. Koonin, A. Mushegian, “A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches”, Bioinformatics, 26:12 (2010), 1481–1487 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btq229'>10.1093/bioinformatics/btq229</ext-link>
[26] B. Contreras-Moreira, P. Vinuesa, “GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis”, Appl. Environ. Microbiol, 79:24 (2013), 7696–7701 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/AEM.02411-13'>10.1128/AEM.02411-13</ext-link>
[27] V. M. Petrov, S. Ratnayaka, J. M. Nolan, E. S. Miller, J. D. Karam, “Genomes of the T4 related bacteriophages as windows on microbial genome evolution”, Virol. J., 7 (2010), 292 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1743-422X-7-292'>10.1186/1743-422X-7-292</ext-link>
[28] E. S. Miller, E. Kutter, G. Mosig, F. Arisaka, T. Kunisawa, W. Ruger, “Bacteriophage T4 genome”, Microbiol. Mol. Biol. Rev, 67:1 (2003), 86–156 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/MMBR.67.1.86-156.2003'>10.1128/MMBR.67.1.86-156.2003</ext-link>
[29] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms”, Mol. Biol. Evol, 35:6 (2018), 1547–1549 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msy096'>10.1093/molbev/msy096</ext-link>
[30] N. Saitou, M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees”, Molecular Biology and Evolution, 4:4 (1987), 406–425 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/oxfordjournals.molbev.a040454'>10.1093/oxfordjournals.molbev.a040454</ext-link>
[31] N. A. Nikulin, S. S. Kiselev, V. V. Panyukov, Y. Lu, A. A. Zimin, “Comparative analysis of Actinobacteria phage-plasmids and their transduction potential”, Mathematical Biology and Bioinformatics, 18 (2023), 323–346 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.323'>10.17537/2023.18.323</ext-link>
[32] T. Sorensen, “A method of establishing groups of equal amplitudes in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons”, Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 5 (1948), 1–34
[33] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum likelihood approach”, J. Mol. Evol, 17 (1981), 368–376 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01734359'>10.1007/BF01734359</ext-link>
[34] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res, 32 (2004), 1792–1797 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkh340'>10.1093/nar/gkh340</ext-link>
[35] G. Schwarz, “Estimating the dimension of a model”, Ann. Stat, 6 (1978), 461–464 <ext-link ext-link-type='doi' href='https://doi.org/10.1214/aos/1176344136'>10.1214/aos/1176344136</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=468014'>468014</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0379.62005'>0379.62005</ext-link>
[36] J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap”, Evolution, 39 (1985), 783–791 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1558-5646.1985.tb00420.x'>10.1111/j.1558-5646.1985.tb00420.x</ext-link>
[37] O. Yu. Kiryanova, I. I. Kiryanov, R. R. Garafutdinov, A. V. Chemeris, I. M. Gubaidullin, Programma dlya EVM No 2021667097 GATCGgenerator (data registratsii 25.10.2021) <ext-link ext-link-type='uri' href='https://onlinepatent.ru/software/2021667097/'>https://onlinepatent.ru/software/2021667097/</ext-link>
[38] S. Tavare, “Some probabilistic and statistical problems in the analysis of DNA sequences”, Lect. Mathem. Life Sci, 17 (1986), 57–86 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=846877'>846877</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0587.92015'>0587.92015</ext-link>
[39] X. Gu, Y. X. Fu, W. H. Li, “Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites”, Mol. Biol. Evol, 12 (1995), 546–557 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/oxfordjournals.molbev.a040235'>10.1093/oxfordjournals.molbev.a040235</ext-link>
[40] S. Whelan, N. Goldman, “A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach”, Mol. Biol. Evol, 18 (2001), 691–699 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/oxfordjournals.molbev.a003851'>10.1093/oxfordjournals.molbev.a003851</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2701454'>2701454</ext-link>
[41] D. L. Church, L. Cerutti, A. Gurtler, T. Griener, A. Zelazny, S. Emler, “Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory”, Clin. Microbiol. Rev., 33 (2020), e0005319 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/CMR.00053-19'>10.1128/CMR.00053-19</ext-link>
[42] W. Ludwig, K. H. Schleifer, “Bacterial phylogeny based on 16S and 23S rRNA sequence analysis”, FEMS Microbiol. Rev, 15:2-3 (1994), 155–173 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1574 6976.1994.tb00132.x'>10.1111/j.1574 6976.1994.tb00132.x</ext-link>
[43] M. Guo, C. Yuan, L. Tao, Y. Cai, W. Zhang, “Life barcoded by DNA barcodes”, Conserv. Genet. Resour, 14:4 (2022), 351–365 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12686-022-01291-2'>10.1007/s12686-022-01291-2</ext-link>
[44] A. Regueira-Iglesias, C. Balsa-Castro, T. Blanco-Pintos, I. Tomas, “Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis”, Mol. Oral Microbiol, 38:5 (2023), 347–399 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/omi.12434'>10.1111/omi.12434</ext-link>
[45] M. Morsli, F. Salipante, C. Magnan, C. Dunyach-Remy, A. Sotto, J. P. Lavigne, “Direct metagenomics investigation of non-surgical hard-to-heal wounds: a review”, Ann. Clin. Microbiol. Antimicrob, 23:1 (2024) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12941-024 00698-z'>10.1186/s12941-024 00698-z</ext-link>
[46] M. T. Kuo, J. L. Chen, S. L. Hsu, A. Chen, H. L. You, “An omics approach to diagnosing or investigating fungal keratitis”, Int. J. Mol. Sci, 20:15 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms20153631'>10.3390/ijms20153631</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1489.68227'>1489.68227</ext-link>
[47] P. Drevinek, R. Hollweck, M. G. Lorenz, M. Lustig, T. Bjarnsholt, “Direct 16S/18S rRNA gene PCR followed by Sanger sequencing as a clinical diagnostic tool for detection of bacterial and fungal infections: a systematic review and meta-analysis”, J. Clin. Microbiol, 61:9 (2023) <ext-link ext-link-type='doi' href='https://doi.org/10.1128/jcm.00338-23'>10.1128/jcm.00338-23</ext-link>
[48] S. H. Poulsen, K. K. Sogaard, K. Fuursted, H. L. Nielsen, “Evaluating the diagnostic accuracy and clinical utility of 16S and 18S rRNA gene targeted next-generation sequencing based on five years of clinical experience”, Infect. Dis. (Lond.), 55:11 (2023), 767–775 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/23744235.2023.2241550'>10.1080/23744235.2023.2241550</ext-link>
[49] P. D. Hebert, A. Cywinska, S. L. Ball, J. R. deWaard, “Biological identifications through DNA barcodes”, Proc. Biol. Sci, 270:1512 (2003), 313–321 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rspb.2002.2218'>10.1098/rspb.2002.2218</ext-link>
[50] Y. Zhu, J. Shang, C. Peng, Y. Sun, “Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework”, Front. Microbiol, 13 (2022), 1032186 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2022.1032186'>10.3389/fmicb.2022.1032186</ext-link>
[51] D. Turner, E. M. Adriaenssens, S. M. Lehman, C. Moraru, A. M. Kropinski, “Bacteriophage taxonomy: a continually evolving discipline”, Methods Mol. Biol, 2734 (2024), 27–45 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-0716-3523-0_3'>10.1007/978-1-0716-3523-0_3</ext-link>
[52] M. Krupovic, D. Turner, V. Morozova, M. Dyall-Smith, H. M. Oksanen, R. Edwards, B. E. Dutilh, S. M. Lehman, A. Reyes, D. P. Baquero et al, “Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021”, Arch. Virol, 166:11 (2021), 3239–3244 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00705-021-05205-9'>10.1007/s00705-021-05205-9</ext-link>
[53] F. M. Zerbini, S. G. Siddell, E. J. Lefkowitz, A. R. Mushegian, E. M. Adriaenssens, P. Alfenas Zerbini, D. M. Dempsey, B. E. Dutilh, M. L. Garcia, R. C. Hendrickson et al, “Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023)”, Arch. Virol, 168:7 (2023), 175 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00705-023-05797-4'>10.1007/s00705-023-05797-4</ext-link>
[54] E. Adriaenssens, J. R. Brister, “How to name and classify your phage: an informal guide”, Viruses, 9:4 (2017), 70 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v9040070'>10.3390/v9040070</ext-link>
[55] R. C.Y. Lin, J. Iredell, A. Khatami, After the paper: Australian Phage Network (accessed 18.10.2024) <ext-link ext-link-type='uri' href='https://communities.springernature.com/posts/after-the-paper-australian-phage-network'>https://communities.springernature.com/posts/after-the-paper-australian-phage-network</ext-link>
[56] J. Onsea, P. Soentjens, S. Djebara, M. Merabishvili, M. Depypere, I. Spriet, P. De Munter, Y. Debaveye, S. Nijs, P. Vanderschot et al, “Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol”, Viruses, 11:10 (2019), 891 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v11100891'>10.3390/v11100891</ext-link>
[57] J. P. Pirnay, G. Verbeken, P. J. Ceyssens, I. Huys, D. De Vos, C. Ameloot, Fauconnier A., “The magistral phage”, Viruses, 10:2 (2018), 64 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v10020064'>10.3390/v10020064</ext-link>
[58] S. B. Gibson, S. I. Green, C. G. Liu, K. C. Salazar, J. R. Clark, A. L. Terwilliger, H. B. Kaplan, A. W. Maresso, B. W. Trautner, R. F. Ramig, “Constructing and characterizing bacteriophage libraries for phage therapy of human infections”, Frontiers in Microbiology, 10 (2019), 2537 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2019.02537'>10.3389/fmicb.2019.02537</ext-link>