Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a3, author = {A. P. Devyaterikov and A. Palyanov}, title = {Acceleration of recombinant viral sequences search by {3SEQ} algorithm via adding support of multi-threaded calculations and considering sample collection dates}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {338--353}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a3/} }
TY - JOUR AU - A. P. Devyaterikov AU - A. Palyanov TI - Acceleration of recombinant viral sequences search by 3SEQ algorithm via adding support of multi-threaded calculations and considering sample collection dates JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 338 EP - 353 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a3/ LA - ru ID - MBB_2024_19_a3 ER -
%0 Journal Article %A A. P. Devyaterikov %A A. Palyanov %T Acceleration of recombinant viral sequences search by 3SEQ algorithm via adding support of multi-threaded calculations and considering sample collection dates %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 338-353 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a3/ %G ru %F MBB_2024_19_a3
A. P. Devyaterikov; A. Palyanov. Acceleration of recombinant viral sequences search by 3SEQ algorithm via adding support of multi-threaded calculations and considering sample collection dates. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 338-353. http://geodesic.mathdoc.fr/item/MBB_2024_19_a3/
[1] Drake J.W., Charlesworth B., Charlesworth D., Crow J.F., “Rates of spontaneous mutation”, Genetics, 148:4 (1998), 1667–1686 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/genetics/148.4.1667'>10.1093/genetics/148.4.1667</ext-link>
[2] R. Sanjuan, P. Domingo-Calap, “Mechanisms of viral mutation”, Cell Mol. Life Sci, 73:23 (2016), 4433–4448 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00018-016-2299-6'>10.1007/s00018-016-2299-6</ext-link>
[3] A. Bolze, S. Basler, S. White, A. D. Rossi, D. Wyman, H. Dai, P. Roychoudhury, A. L. Greninger, K. Hayashibara, M. Beatty et al., “Evidence for SARS-CoV-2 Delta and Omicron co-infections and recombination”, Med, 3:12 (2022), 848–859 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.medj.2022.10.002'>10.1016/j.medj.2022.10.002</ext-link>
[4] E. Simon-Loriere, E. C. Holmes, Why do RNA viruses recombine?, Nat. Rev. Microbiol, 9:8 (2011), 617–626 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrmicro2614'>10.1038/nrmicro2614</ext-link>
[5] D. M. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2004
[6] S. Will, T. Joshi, I. L. Hofacker, P. F. Stadler, R. Backofen, “LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs”, RNA, 18:5 (2012), 900–914 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.029041.111'>10.1261/rna.029041.111</ext-link>
[7] K. Katoh, J. Rozewicki, K. D. Yamada, “MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization”, Briefings in Bioinformatics, 20:4 (2019), 1160–1166 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbx108'>10.1093/bib/bbx108</ext-link>
[8] D. Martin, E. Rybicki, “RDP: detection of recombination amongst aligned sequences”, Bioinformatics, 16:6 (2000), 562–563 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/16.6.562'>10.1093/bioinformatics/16.6.562</ext-link>
[9] D. P. Martin, A. Varsani, P. Roumagnac, G. Botha, S. Maslamoney, T. Schwab, Z. Kelz, V. Kumar, B. Murrell, “RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets”, Virus Evolution, 7:1 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1093/ve/veaa087'>10.1093/ve/veaa087</ext-link>
[10] A. Varabyou, C. Pockrandt, S. L. Salzberg, M. Pertea, “Rapid detection of inter-clade recombination in SARS-CoV-2 with Bolotie”, Genetics, 218:3 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1093/genetics/iyab074'>10.1093/genetics/iyab074</ext-link>
[11] T. Alfonsi, A. Bernasconi, M. Chiara, S. Ceri, “Data-driven recombination detection in viral genomes”, Nat. Commun, 15 (2024) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-024 47464-5'>10.1038/s41467-024 47464-5</ext-link>
[12] G. D. Forney, “The Viterbi algorithm”, Proceedings of the IEEE, 61:3 (1973), 268–278 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/proc.1973.9030'>10.1109/proc.1973.9030</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=439384'>439384</ext-link>
[13] M. F. Boni, D. Posada, M. W. Feldman, “An exact nonparametric method for inferring mosaic structure in sequence triplets”, Genetics, 176:2 (2007), 1035–1047 <ext-link ext-link-type='doi' href='https://doi.org/10.1534/genetics.106.068874'>10.1534/genetics.106.068874</ext-link>
[14] H. M. Lam, O. Ratmann, M. F. Boni, “Improved algorithmic complexity for the 3SEQ recombination detection algorithm”, Mol. Biol. Evol, 35:1 (2018), 247–251 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msx263'>10.1093/molbev/msx263</ext-link>
[15] W. Feller, An Introduction to Probability Theory and Its Applications, v. I, John Wiley & Sons, New York, 1957 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=88081'>88081</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0077.12201'>0077.12201</ext-link>
[16] J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender, P. Sagulenko, T. Bedford, R. A. Neher, “Nextstrain: real-time tracking of pathogen evolution”, Bioinformatics, 34:23 (2018), 4121–4123 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/bty407'>10.1093/bioinformatics/bty407</ext-link>
[17] I. Aksamentov, C. Roemer, E. B. Hodcroft, R. A. Neher, “Nextclade: clade assignment, mutation calling and quality control for viral genomes”, Journal of Open Source Software, 6:67 (2021), 3773 <ext-link ext-link-type='doi' href='https://doi.org/10.21105/joss.03773'>10.21105/joss.03773</ext-link>
[18] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”, AFIPS Conference Proceedings, 30 (1967), 483–485 <ext-link ext-link-type='doi' href='https://doi.org/10.1145/1465482'>10.1145/1465482</ext-link>
[19] F. Baumdicker, G. Bisschop, D. Goldstein, G. Gower, A. P. Ragsdale, G. Tsambos, S. Zhu, B. Eldon, E. C. Ellerman, J. G. Galloway et al, “Efficient ancestry and mutation simulation with msprime 1.0”, Genetics, 220:3 (2022), iyab229 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/genetics/iyab229'>10.1093/genetics/iyab229</ext-link>
[20] S. J. Spielman, C. O. Wilke, “Pyvolve: a flexible Python module for simulating sequences along phylogenies”, PloS One, 10:9 (2015), e0139047 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0139047'>10.1371/journal.pone.0139047</ext-link>
[21] M. F. Boni, G. J.D. Smith, C. E. Holmes, D. Vijaykrishna, “No evidence for intra-segment recombination of 2009 H1N1 influenza virus in swine”, Gene, 494:2 (2012), 242–245 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.gene.2011.10.041'>10.1016/j.gene.2011.10.041</ext-link>