Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a23, author = {Vitaliy I. Kryukov (Hegumen Theophan)}, title = {Repetition suppression and related effects}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {609--645}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a23/} }
Vitaliy I. Kryukov (Hegumen Theophan). Repetition suppression and related effects. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 609-645. http://geodesic.mathdoc.fr/item/MBB_2024_19_a23/
[1] G. Kovccs, S. R. Schweinberger, “Repetition suppression An integrative view”, Cortex, 80 (2016), 1–4
[2] R. N. Henson, “Repetition suppression to faces in the fusiform face area: A personal and dynamic journey”, Cortex, 80 (2016), 174–184
[3] A. Korzeniewska, Y. Wang, Benz H.L, M. S. Fifer, M. Collard, G. Milsap, M. C. Cervenka, A. Martin, S. J. Gotts, N. E. Crone, “Changes in human brain dynamics during behavioral priming and repetition suppression”, Progr. Neurobiol, 189 (2020), 101788
[4] S. J. Gotts, “Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression”, Psychon. Bull. Rev., 23 (2016), 1055–1071
[5] J. A. Westerberg, M. A. Cox, K. Dougherty, A. Maier, “Repetitive stimulation enhances V1 encoding efficiency”, J. of Vision, 18 (2018), 966
[6] K. S. Weiner, K. Grill-Spector, Synchrony upon repetition: One or multiple neural mechanisms?, Cogn. Neurosci., 3 (2012), 243–244
[7] A. Merzagora, T. J. Coffey, M. R. Sperling, A. Sharan, B. Litt, G. Baltuch, J. Jacobs, “Repeated stimuli elicit diminished high-gamma electrocorticographic responses”, Neuroimage, 85 (2014), 844–852
[8] R. Vogels, “Sources of adaptation of inferior temporal cortical responses”, Cortex, 80 (2016), 185–195
[9] P. Vannini, T. Hedden, C. Sullivan, R. A. Sperling, “Differential functional response in the posteromedial cortices and hippocampus to stimulus repetition during successful memory encoding”, Hum. Brain Mapp., 34 (2013), 1568–1578
[10] N. A. Kremers, L. Deuker, T. A. Kranz, C. Oehrn, J. Fell, N. Axmacher, “Hippocampal control of repetition effects for associative stimuli”, Hippocampus, 24 (2014), 892–902
[11] S. Brodt, D. Phlchen, V. L. Flanagin, S. Glasauer, S. Gais, Schnauer M., “Rapid and independent memory formation in the parietal cortex”, Proc. Natl. Acad. Sci. USA, 113 (2016), 13251–13256
[12] S. L. Gonzalez Andino, C. M. Michel, G. Thut, T. Landis, R. Grave de Peralta, “Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain”, Hum. Brain Mapp., 24 (2005), 50–58
[13] M. Grotheer, G. Kovccs, Can predictive coding explain repetition suppression?, Cortex, 80 (2016), 113–124
[14] Z. Lin, S. Zhong, D. Grierson, “Recent advances in ethylene research”, J. Exp. Bot., 60 (2009), 3311–3336
[15] L. Zago, M. J. Fenske, E. Aminoff, M. Bar, “The rise and fall of priming: how visual exposure shapes cortical representations of objects”, Cerebr. Cortex., 15 (2005), 1655–1665
[16] P. Kuravi, R. Vogels, “Effect of adapter duration on repetition suppression in inferior temporal cortex”, Sci. Rep, 7 (2017), 3162
[17] C. P. Lanting, P. M. Briley, C. J. Sumner, K. Krumbholz, “Mechanisms of adaptation in human auditory cortex”, J. Neurophysiol., 110 (2013), 973–983
[18] M. Fritsche, E. Spaak, F. P. de Lange, “A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception”, Elife, 9 (2020), e55389
[19] R. N. Henson, A. Rylands, E. Ross, P. Vuilleumeir, M.D. Rugg, “The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming”, Neuroimage, 21 (2004), 1674–1689
[20] V. Rangarajan, C. Jacques, R. T. Knight, K. S. Weiner, K. Grill-Spector, “Diverse temporal dynamics of repetition suppression revealed by intracranial recordings in the human ventral temporal cortex”, Cerebr. Cortex., 30 (2020), 5988–6003
[21] R. N. Henson, T. Shallice, R. Dolan, “Neuroimaging evidence for dissociable forms of repetition priming”, Sience, 287 (2000), 1269–1272
[22] C. J. Brozinsky, A. P. Yonelinas, N. E. Kroll, C. Ranganath, “Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus”, Hippocampus, 15 (2005), 557–561
[23] A. Suzuki, J. O. Goh, A. Hebrank, B. P. Sutton, L. Jenkins, B. A. Flicker, D. C. Park, “Sustained happiness? Lack of repetition suppression in right-ventral visual cortex for happy faces”, Soc. Cogn. Affect. Neurosci., 6 (2011), 434–441
[24] M. Piazza, P. Pinel, D. Le Bihan, S. Dehaene, “A magnitude code common to numerosities and number symbols in human intraparietal cortex”, Neuron, 53 (2007), 293–305
[25] K. Kar, B. Krekelberg, “Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT”, Cortex, 80 (2016), 21–34
[26] C. J. Whitmire, G. B. Stanley, “Rapid sensory adaptation redux: a circuit perspective”, Neuron, 92 (2016), 298–315
[27] E. K. Miller, R. Desimone, “A neural mechanism for working and recognition memory in inferior temporal cortex”, Science, 254 (1991), 1377–1379
[28] Y. Liu, S. O. Murray, B. Jagadeesh, “Time course and stimulus dependence of repetition induced response suppression in inferotemporal cortex”, J. Neurophysiol., 101 (2009), 418–436
[29] P. C. Fang, I. Stepniewska, J. H. Kaas, “Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti”, J. Compar. Neurol., 490 (2005), 305–333
[30] J. Costa-Faidella, T. Baldeweg, S. Grimm, C. Escera, “Interactions between YWhat and YWhen in the auditory system: Temporal predictability enhances repetition suppression”, J. Neurosci., 31 (2011), 18590–18597
[31] X. Dong, Y. Gao, L. Lv, M. Bao, “Habituation of visual adaptation”, Sci Rep, 7 (2016), 19152
[32] M. van Turennout, T. Ellmore, A. Martin, “Long-lasting cortical plasticity in the object naming system”, Nat. Neurosci., 3 (2000), 1329–1334
[33] C. C. Carbon, T. J. Ditye, “Sustained effects of adaptation on the perception of familiar faces”, Exp Psychol. Hum. Percept. Perform., 37 (2011), 615–625
[34] R. A. Epstein, W. E. Parker, A. M. Feiler, “Two kinds of FMRI repetition suppression? Evidence for dissociable neural mechanisms”, J. Neurophysiol, 99 (2008), 2877–2886
[35] E. M. Tartaglia, G. Mongillo, N. Brunel, “On the relationship between persistent delay activity, repetition enhancement and priming”, Front. Psychol, 5 (2015), 1590
[36] K. S. Weiner, R. Sayres, J. Vinberg, K. Grill-Spector, “fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales”, J. Neurophysiol., 103 (2010), 3349–3365
[37] J. D. Murray, A. Bernacchia, D. J. Freedman, R. Romo, J. D. Wallis, Cai X, C. Padoa Schioppa, T. Pasternak, H. Seo, D. Lee, X. J. Wang, “A hierarchy of intrinsic timescales across primate cortex”, Nat Neurosci., 17 (2014), 1661–1663
[38] H. Sawamura, S. Georgieva, R. Vogels, W. Vanduffel, G. A. Orban, “Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys”, J. Neurosci., 25 (2005), 4294–4306
[39] B. Gauthier, E. Eger, G. Hesselmann, A. L. Giraud, A. Kleinschmidt, “Temporal tuning properties along the human ventral visual stream”, J. Neurosci, 32 (2012), 14433–14441
[40] R. Chaudhuri, A. Bernacchia, X. J. Wang, “A diversity of localized timescales in network activity”, Elife, 3 (2014), e01239
[41] G. La Camera, A. Rauch, D. Thurbon, H. R. Lscher, W. Senn, Fusi S., “Effect of adapter duration on repetition suppression in inferior temporal cortex”, Sci. Rep, 7 (2006), 3162
[42] A. J. Horner, R. N. Henson, Repetition suppression in occipitotemporal cortex despite negligible visual similarity: evidence for postperceptual processing?, Hum Brain Mapp., 32 (2011), 1519–1534
[43] V. P. Murty, I. C. Ballard, K. E. Macduffie, R. M. Krebs, R. A. Adcock, “Hippocampal networks habituate as novelty accumulates”, Learn. Mem., 20 (2013), 229–235
[44] F. Fang, S. O. Murray, S. He, “Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex”, Cerebr. Cortex., 17 (2007), 1402–1411
[45] B. E. Verhoef, G. Kayaert, E. Franko, J. Vangeneugden, R. Vogels, “Stimulus similarity contingent neural adaptation can be time and cortical area dependent”, J. Neurosci., 28 (2008), 10631–10640
[46] B. Li, L. Xiao, H. Yin, P. Liu, X. Huang, “Duration aftereffect depends on the duration of adaptation”, Front. Psychol, 8 (2017), 491
[47] C. Summerfield, E. H. Trittschuh, J. M. Monti, M. M. Mesulam, T. Egner, “Neural repetition suppression reflects fulfilled perceptual expectations”, Nat. Neurosci., 11 (2008), 1004–1006
[48] W. Mhring, N. S. Newcombe, Frick A., “Zooming in on spatial scaling: preschool children and adults use mental transformations to scale spaces”, Dev. Psychol., 50 (2014), 1614–1619
[49] N. Tal, A. Amedi, “Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach”, Exp. Brain Res., 198 (2009), 165–182
[50] X. Wang, X. Guo, L. Chen, Y. Liu, M. E. Goldberg, H. Xu, “Auditory to visual cross modal adaptation for emotion: Psychophysical and neural correlates”, Cerebr. Cortex., 27 (2017), 1337–1346
[51] Kim H., “Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments”, Hum. Brain Mapp., 38 (2017), 1894–1913
[52] J. Poppenk, A. R. McIntosh, M. Moscovitch, “fMRI evidence of equivalent neural suppression by repetition and prior knowledge”, Neuropsychologia, 90 (2016), 159–169
[53] K. S. Moore, D. J. Yi, M. Chun, “The effect of attention on repetition suppression and multivoxel pattern similarity”, J. Cogn. Neurosci., 25 (2013), 1305–1314
[54] C. M. Greene, D. Soto, “Neural repetition effects in the medial temporal lobe complex are modulated by previous encoding experience”, PLoS One, 7 (2012), e40870
[55] P. A. Chouinard, B. F. Morrissey, S. Kohler, M. A. Goodale, “Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects”, Neuroimage, 41 (2008), 130–144
[56] D. J. Yi, T. A. Kelley, R. Marois, M. M. Chun, “Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces”, Brain Res., 1080 (2006), 53–62
[57] W. De Baene, R. Vogels, “Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials”, Cerebr. Cortex., 20 (2010), 2145–2165
[58] S. Yamaguchi, L. A. Hale, M. D'Esposito, R.T. Knight, “Rapid prefrontal-hippocampal habituation to novel events”, J. Neurosci., 24 (2004), 5356–5363
[59] Y. F. Hsu, J. A. Hmlinen, Waszak F., “Repetition suppression comprises both attention independent and attention-dependent processes”, Neuroimage, 98 (2014), 168–175
[60] A. D. Engel, G. McCharty, “Repetition suppression of face-selective evoked and induced EEG recorded from human cortex”, Hum. Brain Mapp, 35 (2014), 4155–4162
[61] D. A. Kaliukhovich, R. Vogels, “Stimulus repetition affects both strength and synchrony of macaque inferior temporal cortical activity”, J. Neurophysiol, 107 (2012), 3509–3527
[62] A. Todorovic, F. van Ede, E. Maris, FP. de Lange, “Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study”, J. Neurosci., 31 (2011), 9118–9123
[63] T. Gruber, M. Muller, “Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG”, Brain Res., 13 (2002), 377–392
[64] T. Gruber, M. Muller, “Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG”, Cerebr. Cortex., 15 (2005), 109–116
[65] C. J. Fiebach, T. Gruber, G. G. Supp, “Neuronal mechanisms of repetition priming in occipitotemporal cortex: spatiotemporal evidence from functional magnetic resonance imaging and electroencephalography”, J. Neurosci., 25 (2005), 3414–3422
[66] C. R. McDonald, T. Thesen, C. Carlson, M. Blumberg, H. M. Girard, A. Trongnetrpunya, J. S. Sherfey, O. Devinsky, R. Kuzniecky, W. K. Dolye et al, “Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing”, Neuroimage, 53 (2010), 707–717
[67] M. S. Mellem, R. B. Friedman, A. V. Medvedev, “Gamma- and theta-band synchronization during semantic priming reflect local and long-range lexical-semantic networks”, Brain Lang., 127 (2013), 440–451
[68] S. J. Eliades, N. E. Crone, W. S. Anderson, D. Ramadoss, F. A. Lenz, D. J. Boatman-Reich, “Adaptation of high-gamma responses in human auditory association cortex”, Neurophysiol., 112 (2014), 2147–2163
[69] U. Malinowska, N. E. Crone, F. A. Lenz, M. Cervenka, D. Boatman-Reich, “Multi regional adaptation in human auditory association cortex”, Front. Hum Neurosci, 11 (2017), 247
[70] K. Kim, L. T. Hsieh, J. Parvizi, C. Ranganath, “Neural repetition suppression effects in the human hippocampus”, Neurobiol. Learn. Mem, 173 (2020), 107269
[71] C. D. Conrad, K. J. McLaughlin, J. S. Harman, C. Foltz, L. Wieczorek, E. Lightner, R. L. Wright, “Chronic glucocorticoids increase hippocampal vulnerability to neurotoxicity under conditions that produce ca3 dendritic retraction but fail to impair spatial recognition memory”, J. Neurosci., 27 (2007), 8278–8285
[72] Y. Wang, B. F. Iliescu, J. Ma, K. Josic, V. Dragoi, “Adaptive changes in neuronal synchronization in macaque V4”, J. Neurosci., 31 (2011), 13204–13213
[73] N. M. Brunet, C. A. Bosman, M. Vinck, M. Roberts, R. Oostenveld, R. Desimone, P. De Weerd, P. Fries, “Stimulus repetition modulates gamma-band Synchronization in primate visual cortex”, Proc. Natl. Acad. Sci USA., 111 (2014), 3626–3631
[74] B. J. Hansen, V. Dragoi, “Adaptation-induced synchronization in laminar cortical circuits”, Proc. Natl. Acad. Sci USA., 108 (2010), 10720–10725
[75] S. J. Gilbert, R. N. Henson, J. S. Simons, “The scale of functional specialization within human prefrontal cortex”, J. Neurosci., 30 (2010), 1233–1237
[76] R. Freunberger, W. Klimesch, P. Sauseng, B. Griesmayr, Y. Hller, T. Pecherstorfer, Hanslmayr S., “Gamma oscillatory activity in a visual discrimination task”, Brain Res. Bull., 71 (2007), 593–600
[77] S. J. Gotts, C. C. Chow, A. Martin, “Repetition priming and repetition suppression: A case for enhanced efficiency through neural synchronization”, Cogn. Neurosci., 3 (2012), 227–237
[78] J. R. Hinman, S. C. Penley, L. L. Long, M. A. Escab, Chrobak J. J., “Septotemporal variation in dynamics of theta: speed and habituation”, J. Neurophysiol., 105 (2011), 2675–2686
[79] D. F. Salisbury, G. Taylor, “Semantic priming increases left hemisphere theta power and intertrial phase synchrony”, Psychophysiology, 49 (2012), 305–311
[80] C. Graetz, F. Ostermann, S. Woeste, S. Slzer, C. E. Drfer, Schwendicke F., “Long-term survival and maintenance efforts of splinted teeth in periodontitis patients”, J. Dent., 80 (2019), 49–54
[81] H. D. Park, S. Correia, A. Ducorps, C. Tallon-Baudry, “Spontaneous fluctuations in neural responses to heartbeats predict visual detection”, Nat. Neurosci., 17 (2014), 612–618
[82] J. Tsunada, A. E. Baker, K. L. Christison-Lagay, S. J. Davis, Y. E. Cohen, “Modulation of cross-frequency coupling by novel and repeated stimuli in the primate ventrolateral prefrontal cortex”, Front. Psychol, 2 (2011), 217
[83] A. M. Gerlicher, A. M. van Loon, H. S. Scholte, V. A. Lamme, A. R. van der Leij, “Emotional facial expressions reduce neural adaptation to face identity”, Soc. Cogn. Affect. Neurosci., 9 (2014), 610–614
[84] P. Rotshtein, R. Malach, U. Hadar, M. Graif, T. Hendler, “Feeling or features: different sensitivity to emotion in high-order visual cortex and amygdala”, Neuron, 32 (2001), 747–757
[85] A. Ishai, L. Pessoa, P. C. Bikle, LG. Ungerleider, “Repetition suppression of faces is modulated by emotion”, Proc. Natl. Acad. Sci. USA, 101 (2004), 9827–9832
[86] T. Ethofer, D. Van De Ville, K. Scherer, P. Vuilleumier, “Decoding of emotional information in voice-sensitive cortices”, Curr. Biol., 19 (2009), 1028–1033
[87] V. Ferrari, M. Codispoti, M. M. Bradley, “Repetition and ERPs during emotional scene processing: A selective review”, Int. J. Psychophysiol., 111 (2017), 170–177
[88] D. J. Holt, A.P. Weiss, S. L. Rauch, C. I. Wright, M. Zalesak, D. C. Goff, T. Ditman, R. C. Welsh, S. Heckers, “Comparative Study”, Biol Psychiatry, 57 (2005), 1011–1019
[89] S. Trapp, S. A. Kotz, “Predicting affective information An evaluation of repetition suppression effect”, Front. Psychol, 7 (2016), 1365
[90] K. A. Shapcott, J. T. Schmiedt, K. Kouroupaki, R. Kienitz, A. Lazar, W. Singer, M. C. Schmid, “Reward-related suppression of neural activity in macaque visual area V4”, Cerebr. Cortex., 30 (2020), 4871–4881
[91] A. Borst, V. L. Flanagin, H. Sompolinsky, “Adaptation without parameter change: Dynamic gain control in motion detection”, Proc. Natl. Acad. Sci. USA, 102 (2005), 6172–6176
[92] P. Neri, “Fast-scale adaptive changes of directional tuning in fly tangential cells are explained by a static nonlinearity”, J. Exp. Biol., 210 (2007), 3199–3208
[93] F. Fabbrini, C. Van den Haute, M. De Vitis, V. Baekelandt, W. Vanduffel, R. Vogels, “Probing the mechanisms of repetition suppression in inferior temporal cortex with optogenetics”, Curr. Biol., 29 (2019), 1988–1998
[94] W. Shew, W. Clawson, J. Pobs, Y. Karimipanah, N. C. Wright, R. Wessel, “Adaptation to sensory input tunes visual cortex to criticality”, Nature Phys., 11 (2015), 659–663
[95] W. P. Clawson, N. C. Wright, R. Wessel, W. L. Shew, “Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection”, PLoS Comput. Biol, 13 (2017), e1005574
[96] N. C. Wright, M. S. Hoseini, R. Wessel, “Adaptation modulates correlated subthreshold response variability in visual cortex”, J. Neurophysiol., 118 (2017), 1257–1269
[97] G. Spigler, S. P. Wilson, “Familiarization: A theory of repetition suppression predicts interference between overlapping cortical representations”, PLoS One, 12 (2017), e0179306
[98] R. Auksztulewicz, K. Friston, “Repetition suppression and its contextual determinants in predictive coding”, Cortex, 80 (2016), 125–140
[99] J. Larsson, A. T. Smith, “fMRI repetition suppression: neuronal adaptation or stimulus expectation? Cerebr”, Cortex, 22 (2012), 567–576
[100] D. Feuerriegel, O. Churches, S. Coussens, H. A.D. Keage, “Evidence for spatiotemporally distinct effects of image repetition and perceptual expectations as measured by event related potentials”, Neuroimage, 169 (2018), 94–105
[101] M. Grotheer, G. Kovacs, “Repetition probability effects depend on prior experiences”, J. Neurosci., 34 (2014), 6640–6646
[102] M. Grotheer, G. Kovacs, “The relationship between stimulus repetitions and fulfilled expectations”, Neuropsychologia, 67 (2015), 175–182
[103] G. Kovccs, D. A. Kaiser, Z. Kaliukhovich, R. Vidnycnszky, R. Vogels, “Repetition probability does not affect fMRI repetition suppression for objects”, J. Neurosci., 33 (2013), 9805–9812
[104] A. Todorovic, F. P. de Lange, “Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields”, J. Neurosci, 32 (2012), 13389–13395
[105] A. Pajani, S. Kouider, P. Roux, V. de Gardelle, “Unsuppressible repetition suppression and exemplar-specific expectation suppression in the fusiform face area”, Sci. Rep, 7 (2017), 160
[106] R. M. Symonds, W. W. Lee, A. Kohn, O. Schwartz, S. Witkowski, E. S. Sussman, “Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection”, Brain Topogr., 30 (2017), 136–148
[107] R. N. Henson, K. L. Campbell, S. W. Davis, J. R. Taylor, T. Emery, S. Erzinclioglu, Cam CAN, R. A. Kievit, “Multiple determinants of lifespan memory differences”, Sci. Rep, 7 (2016), 32527
[108] M. Quiroga, A. P. Morris, B. Krekelberg, “Adaptation without plasticity”, Cell Rep., 17 (2016), 58–68
[109] S. Johnson, J. Marro, J. J. Torres, “Robust short-term memory without synaptic learning”, PLoS One, 8 (2013), e50276
[110] V. I. Kryukov, “Short-term memory as a metastable state. I. Master equation approach”, Cybernetics and system research, v. 2, ed. R. Trappl, Elsevier, 1984, 261–265
[111] V. I. Kryukov, R. M. Borisyuk, G. N. Borisyuk, A. B. Kirillov, Y. E.I. Kovalenko, “Metastable and unstable states in the brain”, Nonlinear Science: Theory and Applications, eds. Dobrushin R.L., Kryukov V.I. and Toom A.L., Manchester University Press, Manchester-New York, 1990, 225–358
[112] V. de Gardelle, M. Waszczuk, T. Egner, C. Summerfield, “Concurrent repetition enhancement and suppression responses in extrastriate visual cortex”, Cerebr. Cortex., 23 (2013), 2235–2244
[113] M. A. Yassa, C. E. Stark, “Multiple signals of recognition memory in the medial temporal lobe”, Hippocampus., 18 (2008), 945–954
[114] S. C. Wissig, A. Kohn, “The influence of surround suppression on adaptation effects in primary visual cortex”, J. Neurophysiol., 107 (2012), 3370–3384
[115] N. E. Barraclough, Page S.A, B. D. Keefe, “Visual adaptation enhances action sound discrimination”, Atten. Percept. Psychophys., 79 (2017), 320–332
[116] R. N. Henson, A. Greve, E. Cooper, M. Gregori, J. S. Simons, L. Geerligs, S. Erzinlioglu, N. Kapur, Browne G., “The effects of hippocampal lesions on MRI measures of structural and functional connectivity”, Hippocampus., 26 (2016), 1447–1463
[117] N. B. Turk-Browne, D. J. Yi, A. B. Leber, M. M. Chun, “Visual quality determines the direction of neural repetition effects”, Cerebr. Cortex., 17 (2007), 425–433
[118] N. G. Muller, H. Strumpf, M. Scholz, B. Baier, L. Melloni, “Repetition suppression versus enhancement-it's quantity that matters”, Cerebr. Cortex., 23 (2013), 315–322
[119] M. Bao, S. A. Engel, “Distinct mechanism for long-term contrast adaptation”, Proc. Natl. Acad. Sci. USA, 109 (2012), 5898–5903
[120] C. R. Stoelzel, J. M. Huff, Y. Bereshpolova, J. Zhuang, X. Hei, J. M. Alonso, H. A. Swadlow, “Hour-long adaptation in the awake early visual system”, J. Neurophysiol., 114 (2015), 1172–1182
[121] N. Ghisovan, A. Nemri, S. Shumikhina, S. Molotchnikoff, “Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex”, BMC Neurosci, 9 (2008), 60
[122] A. Soldan, C. Habeck, Y. Gazes, Y. Stern, “Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects”, Brain Res., 1343 (2010), 122–134
[123] T. T. Liu, A. Nalci, M. Falahpour, The global signal in fMRI: Nuisance or Information?, Neuroimage, 150 (2017), 213–229
[124] N. J. Priebe, I. Lampl, D. Ferster, “Mechanisms of direction selectivity in cat primary visual cortex as revealed by visual adaptation”, J. Neurophysiol, 104 (2010), 2615–2623
[125] T. W. James, I. Gauthier, “Repetition-induced changes in BOLD response reflect accumulation of neural activity”, Hum. Brain Mapp., 27 (2006), 37–46
[126] A. W. Gilmore, S. M. Nelson, T. O. Laumann, E. M. Gordon, J. J. Berg, D. J. Greene, C. Gratton, A. L. Nguyen, M. Ortega, C. R. Hoyt, R. S. Coalson, B. L. Schlaggar, S. E. Petersen, N. U.F. Dosenbach, K. B. McDermott, “High-fidelity mapping of repetition-related changes in the parietal memory network”, Neuroimage, 199 (2019), 427–439
[127] N. Ghisovan, A. Nemri, S. Shumikhina, S. Molotchnikoff, “Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex”, Neuroscience, 164 (2009), 1274–1283
[128] H. C. Barron, M. M. Garvert, T. E. Behrens, Repetition suppression: a means to index neural representations using BOLD?, Philos Trans R Soc Lond B Biol Sci, 371 (2016)
[129] H. C. Barron, T. P. Vogels, T. E. Behrens, M. Ramaswami, “Inhibitory engrams in perception and memory”, Proc. Natl. Acad. Sci. USA, 114 (2017), 6666–6674
[130] X. Zhao, C. Wang, Q. Liu, X. Xiao, T. Jiang, C. Chen, G. Xue, “Neural mechanisms of the spacing effect in episodic memory: A parallel EEG and fMRI study”, Cortex, 69 (2015), 76–92
[131] G. Xue, L. Mei, C. Chen, Z. L. Lu, R. A. Poldrack, Q. Dong, “Facilitating memory for novel characters by reducing neural repetition suppression in the left fusiform cortex”, PLoS One, 5 (2010), e13204
[132] G. Xue, L. Mei, C. Chen, Z. L. Lu, R. Poldrack, Q. Dong, “Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression”, J. Cogn. Neurosci., 23 (2011), 1624–1633
[133] M. P. Lafontaine, H. Thoret, F. Gosselin, Lipp S., “Transcranial direct current stimulation of the dorsolateral prefrontal cortex modulates repetition suppression to unfamiliar faces: an ERP study”, PLoS One, 8 (2013), e81721
[134] Z. M. Reagh, M. A. Yassa, “Repetition strengthens target recognition but impairs similar lure discrimination: evidence for trace competition”, Learn. Mem, 21 (2014), 342–346
[135] K. Miyoshi, T. Minamoto, H. Ashida, “Relationships between priming and subsequent recognition memory”, Springerplus, 3 (2014), 546
[136] T. Geyer, F. Baumgartner, H. J. Mller, Pollmann S., “Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs explicit processing of individual repeated search displays”, Front. Hum. Neurosci, 6 (2012), 272
[137] M. Recasens, S. Leung, S. Grimm, R. Nowak, C. Escera, “Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study”, Neuroimage, 108 (2015), 75–86
[138] C. A. Patterson, S. C. Wissig, A. Kohn, “Adaptation improves performance on a visual search task”, J. of Vision, 13 (2013), 6
[139] D. B. McMahon, “All in the timing: Priming, repetition suppression, and synchrony”, Cogn. Neurosci., 3 (2012), 244–246
[140] K. Miyoshi, Y. Kimura, H. Ashida, “Longer prime presentation decreases picture-word cross-domain priming”, Front. Psychol, 21 (2015), 1040
[141] A. S. Ghuman, M. Bar, I. G. Dobbins, D. M. Schnyer, “The effects of priming on frontal temporal communication”, Proc. Natl. Acad. Sci. USA, 105 (2008), 8405–8409
[142] C. Hawco, M. Lepage, “Overlapping patterns of neural activity for different forms of novelty in fMRI”, Front. Hum. Neurosci, 8 (2014), 699
[143] C. J. Berry, R. P. Kessels, A. J. Wester, D. R. Shanks, “A single-system model predicts recognition memory and repetition priming in amnesia”, J. Neuroscience., 34 (2014), 10963–10974
[144] K. Grill-Spector, R. Henson, A. Martin, “Repetition and the brain: neural models of stimulus-specific effects”, Trends Cogn. Sci., 10 (2006), 14–23
[145] C. A. Patterson, S. C. Wissig, A. Kohn, “Adaptation disrupts motion integration in the primate dorsal stream”, Neuron, 81 (2014), 674–686
[146] D. A. Kaliukhovich, R. Vogels, “Decoding of repeated objects from local field potentials in macaque inferior temporal cortex”, PLoS One, 8 (2013), e74665
[147] T. J. Wiltshire, M. J. Euler, T. L. McKinney, J. E. Butner, “Changes in dimensionality and fractal scaling suggest soft-assembled dynamics in human EEG”, Front. Physiol, 8 (2017), 633
[148] K. Segaert, K. Weber, F. P. de Lange, K. M. Petersson, P. Hagoort, “The suppression of repetition enhancement: a review of fMRI studies”, Neuropsychologia, 51 (2013), 59–66
[149] G. Felsen, Y. S. Shen, H. Yao, G. Spor, C. Li, Y. Dan, “Dynamic modification of cortical orientation tuning mediated by recurrent connections”, Neuron, 36 (2002)
[150] G. Kovacs, M. Zimmer, E. Bank, I. Harza, A. Antal, Vidnycnszky Z., “Electrophysiological correlates of visual adaptation to faces and body parts in humans”, Cerebr. Cortex., 16 (2006), 742–753
[151] M. A. Webster, D. Kaping, Y. Mizokami, P. Duhamel, “Adaptation to natural facial categories”, Nature., 428 (2004), 557–561
[152] M. Bouchard, P. C. Gillet, S. Shumikhina, S. Molotchnikoff, “Adaptation changes the spatial frequency tuning of adult cat visual cortex neurons”, Exp. Brain Res., 188 (2008), 289–303
[153] S. Marshansky, S. Shumikhina, S. Molotchnikoff, “Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex”, Neuroscience, 172 (2011), 355–365
[154] D. B. McMahon, C. R. Olson, “Repetition suppression in monkey inferotemporal cortex: relation to behavioral priming”, J. Neurophysiol., 97 (2007), 3532–3543
[155] E. V. Ward, C. J. Berry, D. R. Shanks, “Age effects on explicit and implicit memory”, Front. Psychol, 4 (2013), 639
[156] T. Ganel, C. L. Gonzalez, K. F. Valyear, J. C. Culham, M. A. Goodale, Köhler S., “The relationship between fMRI adaptation and repetition priming”, Neuroimage, 32 (2006), 1432–1440
[157] N. Bunzeck, C. Thiel, “Neurochemical modulation of repetition suppression and novelty signals in the human brain”, Cortex, 80 (2016), 161–173
[158] D. Kaiser, C. Walther, S. R. Schweinberger, G. Kovccs, “Dissociating the neural bases of repetition-priming and adaptation in the human brain for faces”, J. Neurophysiol., 110 (2013), 2727–2738
[159] D. L. Schacter, D. R. Addis, R. L. Buckner, “Remembering the past to imagine the future: the prospective brain”, Nat. Rev. Neurosci., 8 (2007), 657–661
[160] C. Walther, S. R. Schweinberger, D. Kaiser, G. Kovccs, “Neural correlates of priming and adaptation in familiar face perception”, Cortex, 49 (2013), 1963–1977
[161] S. J. Gotts, S. C. Milleville, A. Martin, “Enhanced inter-regional coupling of neural responses and repetition suppression provide separate contributions to long-term behavioral priming”, Commun. Biol, 4 (2021), 487
[162] R. N. Henson, “Neuroimaging studies of priming”, Prog. Neurobiol., 70 (2003), 53–81
[163] V. Ferrari, M. M. Bradley, M. Codispoti, P. J. Lang, “Massed and distributed repetition of natural scenes: Brain potentials and oscillatory activity”, Psychophysiology., 52 (2015), 865–872
[164] A. C. Heusser, T. Awipi, L. Davachi, “The ups and downs of repetition: modulation of the perirhinal cortex by conceptual repetition predicts priming and long-term memory”, Neuropsychologia, 51 (2013), 2333–2343
[165] Y. Wang, S. Romani, B. Lustig, A. Leonardo, E. Pastalkova, “Theta sequences are essential for internally generated hippocampal firing fields”, Nat. Neurosci., 18 (2015), 282–288
[166] J. L. Park, D. I. Donaldson, “Investigating the relationship between implicit and explicit memory: Evidence that masked repetition priming speeds the onset of recollection”, Neuroimage, 139 (2016), 8–16
[167] J. L. Voss, P. J. Reber, M. M. Mesulam, T. B. Parrish, K. A. Paller, “Familiarity and conceptual priming engage distinct cortical networks”, Cerebr. Cortex., 18 (2008), 1712–1719
[168] J. L. Voss, B. D. Gonsalves, “Time to go our separate ways: opposite effects of study duration on priming and recognition reveal distinct neural substrates”, Front Hum Neurosci, 4 (2010), 227
[169] A. J. Horner, Henson R. N. Priming, “response learning and repetition suppression”, Neuropsychologia, 46 (2008), 1979–1991
[170] S. J. Gotts, S. C. Milleville, A. Martin, “Object identification leads to a conceptual broadening of object representations in lateral prefrontal cortex”, Neuropsychologia, 76 (2015), 62–78
[171] M. Carandini, D. J. Heeger, “Normalization as a canonical neural computation”, Nat. Rev. Neurosci., 13:1 (2011), 51–62
[172] J. H. Reynolds, D. J. Heeger, “The normalization model of attention”, Neuron, 61 (2009), 168–185
[173] J. Lee, J. H. Maunsell, “A normalization model of attentional modulation of single unit responses”, PLoS One, 4 (2009), e4651
[174] A. M. Ni, S. Ray, J. H. Maunsell, “Tuned normalization explains the size of attention modulations”, Neuron, 73 (2012), 803–813
[175] J. S. Montijn, P. C. Klink, R. J. van Wezel, “Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention”, Front. Neur. Circuits, 6 (2012), 22
[176] S. Ray, A. M. Ni, J. H. Maunsell, “Strength of gamma rhythm depends on normalization”, PLoS Biol, 11 (2013), e1001477
[177] M. Sanayei, J. L. Herrero, C. Distler, A. Thiele, “Attention and normalization circuits in macaque V1”, Eur. J. Neurosci., 41 (2015), 949–964
[178] Z. M. Westrick, D. J. Heeger, M. S. Landy, “Pattern adaptation and normalization reweighting”, J. Neurosci., 36 (2016), 9805–9816
[179] M. Snow, R. Coen-Cagli, O. Schwartz, “Adaptation in the visual cortex: a case for probing neuronal populations with natural stimuli”, F1000Res, 6 (2017), 1246
[180] F. H. Sinz, M. Bethge, What is the limit of redundancy reduction with divisive normalization?, Neural Comput, 25, 2809–2814 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1415.92059'>1415.92059</ext-link>
[181] Hegumen Theophan (V. I. Kryukov), “A potential solution to the Ydifficult problem of consciousness”, Journal of Higher Nervous Activity, 70 (2020), 434–467 (in Russ.)
[182] Kryukov V. I. (Igumen Feofan), “A model of attention and memory based on the principle of the dominant and the comparator function of the hippocampus”, Neurosci. Behav. Physiol., 35 (2005), 235–252
[183] M. Sanchez-Alavez, P. Robledo, D. N. Wills, J. Havstad, C. L. Ehlers, “Cholinergic modulation of event-related oscillations (ERO)”, Brain Res., 1559 (2014), 11–25
[184] D. G. Amaral, M. Witter, “Hippocampal formation”, The rat nervous system, ed. Paxinos G., Academic Press, New York, 2004, 443–493
[185] B. Hangya, Z. Borhegyi, N. Szilcgyi, T. F. Freund, V. Varga, “GABAergic neurons of the medial septum lead the hippocampal network during theta activity”, J. Neurosci., 29 (2009), 8094–8102
[186] D. Kang, M. Ding, I. Topchiy, B. Kocsis, “Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings”, Front. Neuroanat, 11 (2017), 120
[187] L. L. Long, J. G. Bunce, J. J. Chrobak, “Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus”, Front. Syst. Neurosci, 9 (2015), 37
[188] M. Tsanov, “Septo-hippocampal signal processing: breaking the code”, Progr. Brain Res., 219 (2015), 103–120
[189] A. M. Schedlbauer, M. S. Copara, A. J. Watrous, A. D. Ekstrom, “Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans”, Sci. Rep, 4 (2014), 6431
[190] M. R. Hunsaker, G. G. Mooy, J. S. Swift, R. P. Kesner, “Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing”, Behav. Neurosc., 121 (2007), 742–750
[191] I. Lee, M. R. Hunsaker, R. P. Kesner, “The role of hippocampal subregions in detecting spatial novelty”, Behav. Neurosci., 119 (2005), 145–153
[192] M. E. Hasselmo, “What is the function of hippocampal theta rhythm? Linking behavioral data to phasic properties of field potential and unit recording data”, Hippocampus., 15 (2005), 936–949
[193] C. Forcato, L. Bavassi, G. De Pino, R. S. Ferncndez, M. F. Villarreal, M. E. Pedreira, “Differential left hippocampal activation during retrieval with different types of reminders: An fMRI study of the reconsolidation process”, PLoS One, 11 (2016), e0151381
[194] D. M. Bannerman, R. Sprengel, D. J. Sanderson, S. B. McHugh, J. N. Rawlins, H. Monyer, P. H. Seeburg, “Hippocampal synaptic plasticity, spatial memory and anxiety”, Nat. Rev. Neurosci., 15 (2014), 181–192
[195] A. M. Taylor, T. Bus, R. Sprengel, P. H. Seeburg, J. N. Rawlins, D. M. Bannerman, “Hippocampal NMDA receptors are important for behavioural inhibition but not for encoding associative spatial memories”, Phil. Trans. R Soc. London, B Biol. Sci, 369 (2013), 20130149
[196] O. S. Vinogradova, “Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information”, Hippocampus., 11 (2001), 578–598 (in Russ.)
[197] B. Misic, J. Goi, R. F. Betzel, O. Sporns, McIntosh A. R., “A network convergence zone in the hippocampus”, PLoS Comput. Biol., 10 (2014), e1003982
[198] L. Gurguryan, M. Rioux, S. Sheldon, “Reduced anterior hippocampal and ventromedial prefrontal when repeatedly retrieving autobiographical memories”, Hippocampus., 31 (2021), 869–880
[199] J. R. Ahn, Lee H.W, I. Lee, “Rhythmic pruning of perceptual noise for object representation in the hippocampus and perirhinal cortex in rats”, Cell Rep., 26 (2019), 2362–2376
[200] H. Zhang, A. J. Watrous, Patel A, J. Jacobs, “Theta and alpha oscillations are traveling waves in the human neocortex”, Neuron, 98 (2018), 1269–1281.e4
[201] C. M. Sweeney-Reed, T. Zaehle, J. Voges, F. C. Schmitt, L. Buentjen, K. Kopitzki, Richardson-Klavehn A., Hinrichs H., Heinze H.J., Knight R.T., Rugg M.D., “Clinical, neuropsychological, and pre-stimulus dorsomedial thalamic nucleus electrophysiological data in deep brain stimulation patients”, Data Brief., 15 (2016), 557–561
[202] M. C. De Lima, P. Douglas Corra Pereira, E. Pereira Henrique, M. Augusto de Oliveira, Carvalho Paulo D, L. Silva de Siqueira, D. Guerreiro Diniz, D. Almeida Miranda, M. Andr Damasceno de Melo, Gyzely de Morais Magalhyes N., “Differential change in hippocampal radial astrocytes and neurogenesis in shorebirds with contrasting migratory routes”, Front. Neuroanat, 13 (2019), 82
[203] M. M. Klein, T. Cholvin, B. Cosquer, A. Salvadori, J. Le Mero, L. Kourouma, A. L. Boutillier, Pereira de Vasconcelos A., Cassel J.C., “Ventral midline thalamus lesion prevents persistence of new (learning-triggered) hippocampal spines, delayed neocortical spinogenesis, and spatial memory durability”, Brain Struct. Funct., 224 (2019), 1659–1676
[204] M. M. Halassa, S. Kastner, “Thalamic functions in distributed cognitive control”, Nat. Neurosci., 20 (2017), 1669–1679
[205] J. Turchi, C. Chang, F. Q. Ye, B. E. Russ, D. K. Yu, C. R. Cortes, I. E. Monosov, J. H. Duyn, D. A. Leopold, “The basal forebrain regulates global resting-state fmri fluctuations”, Neuron, 97 (2018), 940–952
[206] B. J. Baars, S. Franklin, T. Z. Ramsoy, “Global workspace dynamics: cortical “binding and propagation” enables conscious contents”, Front. Psychol, 4 (2013), 200
[207] P. T. Bell, J. M. Shine, “Subcortical contributions to large-scale network communication”, Neurosci. Biobehav. Rev., 71 (2016), 313–322
[208] D. B. Headley, Par D., “Common oscillatory mechanisms across multiple memory systems”, NPJ Sci. Learn, 2 (2017)
[209] M. Malekmohammadi, W. J. Elias, N. Pouratian, “Human thalamus regulates cortical activity via spatially specific and structurally constrained phase-amplitude coupling”, Cerebr. Cortex., 25 (2015), 1618-1628
[210] H. Jiang, A. Bahramisharif, M. A. van Gerven, O. Jensen, “Measuring directionality between neuronal oscillations of different frequencies”, Neuroimage, 118 (2015), 359–367
[211] E. Spaak, M. Bonnefond, A. Maier, D. A. Leopold, O. Jensen, “Layer-specific entrainment of-band neural activity by the a rhythm in monkey visual cortex”, Curr. Biol., 22 (2012), 2313–2318
[212] W. Tang, H. Liu, L. Douw, M. A. Kramer, U. T. Eden, M. S. Hmlinen, Stufflebeam S. M., “Dynamic connectivity modulates local activity in the core regions of the default-mode network”, Proc. Natl. Acad. Sci. USA, 114 (2017), 9713–9718
[213] K. E. Weaver, J. D. Wander, A. L. Ko, K. Casimo, T. J. Grabowski, J. G. Ojemann, F. Darvas, “Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity”, Neuroimage, 128 (2016), 238–251
[214] J. E. Chen, G. H. Glover, M. D. Greicius, C. Chang, “Dissociated patterns of anticorrelations with dorsal and ventral default-mode networks at rest”, Hum. Brain Mapp., 38 (2017), 2454–2465
[215] Y. Ma, Z. Ma, Z. Liang, T. Neuberger, N. Zhang, “Global brain signal in awake rats”, Brain Struct Funct., 225 (2020), 227–240
[216] D. Gutierrez-Barragan, M. Basson, S. Panzeri, A. Gozzi, “Ultraslow state fluctuations govern spontaneous fMRI network dynamics”, Curr. Biol, 29 (2018), 2295–2306
[217] “Making room for new memories”, Neuroscience, 359 (A. Draguhn), 1461–1462
[218] H. Lehmann, K. C. McNamara, “Repeatedly reactivated memories become more resistant to hippocampal damage”, Learn. Mem., 18 (2011), 132–135
[219] K. A. Toropova, D. V. Troshev, O. I. Ivashkina, K. V. Anokhin, “Activation of c-fos expression in the retrosplenial cortex, but not the hippocampus, accompanies the formation of an association between an installation and an unconditional stimulus and its subsequent extraction in mice”, Journal of Higher Nervous Activity, 68 (2018), 756–770 (in Russ.)
[220] G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzscki, M. B. Zugaro, “Selective suppression of hippocampal ripples impairs spatial memory”, Nat. Neurosci., 12 (2009), 1222–1223
[221] M. R. Hunsaker, R. P. Kesner, “The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory”, Neurosci. Biobehav. Rev., 37 (2013), 36–58
[222] R. Shema, R. Kulicke, G. S. Cowley, R. Stein, D. E. Root, M. Heiman, “Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington's disease”, Proc. Natl. Acad. Sci. USA, 112 (2015), 268–272
[223] Y. Makino, D. Polygalov, F. Bolaos, A. Benucci, McHugh T. J., “Physiological signature of memory age in the prefrontal-hippocampal circuit”, Cell Rep, 29 (2019), 3835–3846
[224] R. A. Wirt, J. M. Hyman, “ACC Theta improves hippocampal contextual processing during remote recall”, Cell Rep., 27 (2019), 2313–2327
[225] H. K. Titley, N. Brunel, C. Hansel, “Toward a neurocentric view of learning”, Neuron, 95 (2017), 19–32
[226] A. Attardo, J. E. Fitzgerald, M. J. Schnitzer, “Impermanence of dendritic spines in live adult CA1 hippocampus”, Nature., 523 (2015), 592–596
[227] H. Chen, Y. J. Wang, L. Yang, C. Hu, X. F. Ke, Z. L. Fan, J. F. Sui, B. Hu, “Predictive nature of prefrontal theta oscillation on the performance of trace conditioned eyeblink responses in guinea pigs”, Behav. Brain Res., 265 (2014), 121–131
[228] J. S. Montijn, G. T. Meijer, C. S. Lansink, C. M. Pennartz, “Population-level neural codes are robust to single-neuron variability from a multidimensional coding perspective”, Cell Reports., 16 (2016), 2486–2498
[229] G. A. Elias, K. M. Bieszczad, N. M. Weinberger, “Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory”, Neurobiol. Learn. Mem., 126 (2015), 39–55
[230] T. J. Ryan, D. S. Roy, M. Pignatelli, A. Arons, S. Tonegawa, “Engram cells retain memory under retrograde amnesia”, Science, 348 (2015), 1007–1013
[231] M. M. Poo, M. Pignatelli, T. J. Ryan, S. Tonegawa, T. Bonhoeffer, K. C. Martin, A. Rudenko, L. H. Tsai, R. W. Tsien, G. Fishell et al, “What is memory? The present state of the engram”, BMC Biol, 14 (2016), 40
[232] S. Josselyn, S. Tanegawa, “Memory engrams: Recalling the past and imagining the future”, Science, 367 (2020), eaaw4325
[233] J. Sui, G. W. Humphreys, “The Integrative Self: How self-reference integrates perception and memory”, Trends Cogn. Sci., 19 (2015), 719–728
[234] W. L. Shew, D. Plenz, “The functional benefits of criticality in the cortex”, Neuroscientist., 19 (2013), 88–100
[235] E. Tagliazucchi, D. R. Chialvo, M. Siniatchkin, E. Amico, J. F. Brichant, V. Bonhomme, Q. Noirhomme, H. Laufs, S. Laureys, “Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics”, J. R. Soc. Interface, 13 (2016), 20151027
[236] J. Larsson, S. G. Solomon, A. Kohn, “fMRI adaptation revisited”, Cortex, 80 (2016), 154–160
[237] K. A. Ferguson, J. A. Cardin, “Mechanisms underlying gain modulation in the cortex”, Nat. Rev. Neurosci., 21 (2020), 80–92
[238] S. G. Solomon, A. Kohn, “Moving sensory adaptation beyond suppressive effects in single neurons”, Curr. Biol., 24 (2014), 1012–1022
[239] D. A. Kaliukhovich, R. Vogels, “Divisive normalization predicts adaptation-induced response changes in macaque inferior temporal cortex”, J. Neurosci., 36 (2016), 6116–6128
[240] M. F. Burg, S. A. Cadena, G. H. Denfield, E. Y. Walker, A. S. Tolias, M. Bethge, A. S. Ecker, “Learning divisive normalization in primary visual cortex”, PLoS Comput. Biol, 17 (2021), e1009028
[241] V. I. Kryukov, “Towards a unified model of pavlovian conditioning: short review of trace conditioning models”, Cogn. Neurodyn., 6 (2012), 377–398
[242] S. Netser, Y. Zahar, Y. Gutfreund, Stimulus-specific adaptation: can it be a neural correlate of behavioral habituation?, J. Neurosci., 31 (2011), 17811–17820
[243] R. Pellegrino, C. Sinding, de Wijk R.A, T. Hummel, “Habituation and adaptation to odors in humans”, Physiol. Behav., 177 (2017), 13–19
[244] C. H. Rankin, T. Abrams, R. J. Barry, Bhatnagar S, D. F. Clayton, J. Colombo, G. Coppola, M. A. Geyer, D. L. Glanzman, S. Marsland et al, “Habituation revisited: an updated and revised description of the behavioral characteristics of habituation”, Neurobiol. Learn. Mem., 92 (2009), 135–138
[245] A. G. Bragin, O. S. Vinogradova, V. V. Emel'ianov, “Influence of the dentate fascia on the sensory responses of neurons in hippocampal field CA3”, Journal of Higher Nervous Activity, 26 (1976), 605–611 (in Russ.)
[246] O. S. Vinogradova, K. I. Dudaeva, “Comparator function of the hippocampus”, Dokl. Akad. Nauk SSSR, 202 (1972), 486–489 (in Russ.)
[247] N. McNaughton, “The role of the subiculum within the behavioural inhibition system”, Behavioural Brain Research., 174 (2006), 232–250
[248] M. H. Fischer, A. D. Castel, M. D. Dodd, J. Pratt, “Perceiving numbers causes spatial shifts of attention”, Nat. Neurosci., 6 (2003), 555–556
[249] Moore D., “Cortical neurons signal sound novelty”, Nat. Neurosci, 6 (2003), 330–332
[250] K. R. Dukewich, “Reconceptualizing inhibition of return as habituation of the orienting response”, Psychon. Bull. Rev., 16 (2009), 238–251
[251] B. A. Strange, R. J. Dolan, “Adaptive anterior hippocampal responses to oddball stimuli”, Hippocampus., 11 (2001), 690–698
[252] V. F. Kitchigina, “Theta oscillations and reactivity of hippocampal stratum oriens neurons”, Scientific World Journal., 10 (2010), 30–43
[253] N. Faivre, S. Kouider, “Increased sensory evidence reverses nonconscious priming during crowding”, J. Vis, 11 (2011), 16
[254] T. A. McDiarmid, A.C. Bernardos, C.H. Rankin, “Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis”, Neurosci. Biobehav. Rev., 80 (2017), 286–305
[255] S. Schmid, D. A. Wilson, C. H. Rankin, “Habituation mechanisms and their importance for cognitive function”, Front. Integr. Neurosci, 8 (2015), 97
[256] A. V. Sokolov, “Specific antigens of the central nervous system”, Patol. Fiziol. Eksp. Ter., 4 (1960), 23–26 (in Russ.)
[257] A. V. Sokolov, “On specific antigens of the central nervous system”, Patol. Fiziol. Eksp. Ter., 7 (1963), 79–81 (in Russ.)
[258] P. M. Groves, R. F. Thompson, “Habituation: a dual-process theory”, Psychol. Rev. 1970, 77, 419–450
[259] R. Borisyuk, M. Denham, F. Hoppensteadt, Y. Kazanovich, O. Vinogradova, “Oscillatory model of novelty detection”, Network., 12 (2001), 1–20
[260] C. Frings, K. K. Schneider, E. Fox, “The negative priming paradigm: An update and implications for selective attention”, Psychon. Bull. Rev., 22 (2015), 1577–1597
[261] D. L. Strayer, F. A. Drews, R. W. Albert, “Negative priming and stimulus repetition: A reply to Neill and Joordens”, Percept. Psychophys., 64 (2002), 861–865
[262] S. Grison, D. L. Strayer, “Negative priming and perceptual fluency: more than what meets the eye”, Percept. Psychophys., 63 (2001), 1063–1071
[263] D.L. Strayer, S. Grison, “Negative identity priming is contingent on stimulus repetition”, J. Exp. Psychol. Hum. Percept. Perform., 25 (1999), 24–38
[264] C. Frings, C. Spence, “Increased perceptual and conceptual processing difficulty makes the immeasurable measurable: negative priming in the absence of probe distractors”, J. Exp. Psychol. Hum. Percept. Perform., 37 (2011), 72–84
[265] G. B. Malley, D. L. Strayer, “Effect of stimulus repetition on positive and negative identity priming”, Attention, Percept. & Psychophys., 57 (1995), 657–667
[266] J. W. de Fockert, G. A. Mizon, M. D'Ubaldo, “No negative priming without cognitive control”, J. Exp. Psychol. Hum. Percept. Perform., 36 (2010), 1333–1341
[267] S. Mayr, A. Buchner, S. Dentale, “Prime retrieval of motor responses in negative priming”, J. Exp. Psychol. Hum. Percept. Perform., 35 (2009), 408–423
[268] R. N. Henson, D. Eckstein, F. Waszak, C. Frings, A. J. Horner, “Stimulus-response bindings in priming”, Trends Cogn. Sci., 18 (2014), 376–384
[269] R. M. Klein, “Inhibition of return”, Trends Cogn. Sci., 4 (2000), 138–147
[270] A. G. Samuel, D. Kat, “Inhibition of return: A graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties”, Psych. Bull. and Review., 10 (2003), 897–906
[271] M. Posner, Y. Cohen, “Components of visual orienting”, Attention and performance X: Control of language processes, 32, eds. Bouma H., D. G. Bouwhuis, 1984, 531–556
[272] L. Francis, B. Milliken, Inhibition of return for the length of a line?, Percept Psychophys., 65 (2003), 1208–1221
[273] F. K. Hu, S. He, Z. Fan, Lupicez J., “Beyond the inhibition of return of attention: reduced habituation to threatening faces in schizophrenia”, Front. Psychiatry, 5 (2014)
[274] X. Zhou, Q. Chen, “Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting”, Neuropsychologia, 46 (2008), 2766–2775
[275] F. K. Hu, A. G. Samuel, A. S. Chan, “Eliminating inhibition of return by changing salient nonspatial attributes in a complex environment”, J. Exp. Psychol. Gen., 140 (2011), 35–50
[276] E. Martin-Arevalo, A. B. Chica, J. Lupianez, “No single electrophysiological marker for facilitation and inhibition of return: A review”, Behav. Brain Res., 300 (2016), 1–10
[277] C. Prez-Dueas, A. Acosta, Lupicez J., “Reduced habituation to angry faces: increased attentional capture as to override inhibition of return”, Psychol. Res, 78 (2014), 196–208
[278] J. Satel, M. D. Hilchey, Z. Wang, R. Story, R. M. Klein, “The effects of ignored versus foveated cues upon inhibition of return: an event-related potential study”, Atten. Percept. Psychophys., 75 (2013), 29–40
[279] Y. Tian, R. M. Klein, J. Satel, P. Xu, D. Yao, “Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm”, Brain Topogr., 24 (2011), 164–182
[280] Y. Zhao, D. Heinke, “What causes IOR? Attention or perception? Manipulating cue and target luminance in either blocked or mixed condition”, Vision Res, 105 (2014), 37–46
[281] M. Y. Chan, D. C. Park, N. K. Savalia, S. E. Petersen, G. S. Wig, “Decreased segregation of brain systems across the healthy adult lifespan”, Proc. Natl. Acad. Sci. USA, 2014, 4997–5006
[282] G. Deco, M. L. Kringelbach, V. K. Jirsa, P. Ritter, “The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core”, Sci. Rep, 7 (2017), 3095
[283] P. Massobrio, L. de Arcangelis, V. Pasquale, H. J. Jensen, D. Plenz, “Criticality as a signature of healthy neural systems”, Front. Syst. Neurosci, 9 (2015), 22
[284] P. Marques, P. Moreira, R. Magalhyes, P. Costa, N. Santos, J. Zihl, J. Soares, N. Sousa, “The functional connectome of cognitive reserve”, Hum. Brain Mapp., 37 (2016), 3310–3322
[285] G. Deco, M. L. Kringelbach, “Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders”, Neuron, 84 (2014), 892–905
[286] O. Sporns, “Structure and function of complex brain networks”, Dialogues Clin Neurosci., 15 (2013), 247–262
[287] A. R. Backus, J. M. Schoffelen, S. Szebnyi, S. Hanslmayr, Doeller C. F., “Hippocampal prefrontal theta oscillations support memory integration”, Curr. Biol., 22 (2016), 450–457
[288] J. M. Shine, M. J. Aburn, M. Breakspear, R. A. Poldrack, “The modulation of neural gain facilitates a transition between functional segregation and integration in the brain”, Elife, 7 (2018), e31130
[289] G. Deco, J. Cabral, V. M. Saenger, M. Boly, E. Tagliazucchi, H. Laufs, E. Van Someren, B. Jobst, A. Stevner, M. L. Kringelbach, “Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states”, Neuroimage, 169 (2018), 46–56
[290] G. Deco, G. Tononi, M. Boly, M. L. Kringelbach, “Rethinking segregation and integration: contributions of whole-brain modeling”, Nat. Rev. Neurosci., 16 (2015), 430–439
[291] Y. N. Kenett, J. D. Medaglia, R. E. Beaty, Q. Chen, R. F. Betzel, S. L. Thompson-Schill, J. Qiu, “Driving the brain towards creativity and intelligence: A network control theory analysis”, Neuropsychologia, 118 (2018), 79–90
[292] C. Koch, M. Massimini, M. Boly, G. Tononi, “Neural correlates of consciousness: progress and problems”, Nat. Rev. Neurosci., 17 (2016), 307–321
[293] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, G. L. Shulman, “A default mode of brain function”, Proc. Natl. Acad. Sci. USA, 98 (2001), 676–682
[294] M. E. Raichle, “The brain's default mode network”, Ann. Rev. Neurosci., 38 (2015), 433–447
[295] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, M. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks”, Proc. Natl. Acad. Sci. USA., 102 (2005), 9673–9678
[296] M. D. Greicius, B. Krasnow, J. M. Boyett-Anderson, S. Eliez, A. F. Schatzberg, A. L. Reiss, V. Menon, “Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study”, Hippocampus., 13 (2003), 164–174
[297] P. Fransson, “Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis”, Hum. Brain Mapp., 26 (2005), 15–29
[298] Y. Golland, S. Bentin, H. Gelbard, Y. Benjamini, R. Heller, Y. Nir, U. Hasson, R. Malach, “Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation”, Cerebr. Cortex., 17 (2007), 766–777
[299] R. L. Buckner, J. R. Andrews-Hanna, D. L. Schacter, “The brainTs default network anatomy, function, and relevance to disease”, Ann. NY Acad. Sci., 1124 (2008), 1–38
[300] A. I. Jack, A. Dawson, K. Begany, Leckie R.L, K. Barry, A. Ciccia, A. Z. Snyder, “fMRI reveals reciprocal inhibition between social and physical cognitive domains”, Neuroimage, 66 (2012), 385–401
[301] K. C. Rochford, A. I. Jack, R. E. Boyatzis, S. E. French, “Ethical leadership as a balance between opposing neural networks”, J. Business Ethics., 144 (2017), 755–770
[302] R. E. Boyatzis, K. Rochford, A. I. Jack, “Antagonistic neural networks underlying differentiated leadership roles”, Front. Hum. Neurosci, 8 (2014), 114
[303] M. L. Dixon, J. R. Andrews-Hanna, R. N. Spreng, Z. C. Irving, C. Mills, M. Girn, K. Christoff, “Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states”, Neuroimage, 147 (2016), 632–649
[304] A. Fornito, A. Zalesky, C. Pantelis, E. T. Bullmore, “Schizophrenia, neuroimaging, connectomics”, Neuroimage, 62 (2012), 2296–2314
[305] B. L. Foster, V. Rangarajan, W. R. Shirer, J. Parvizi, “Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex”, Neuron, 86 (2015), 578—590
[306] R. F. Betzel, M. Fukushima, Y. He, X. N. Zuo, O. Sporns, “Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks”, Neuroimage, 127 (2016), 287–297
[307] D. Vatansever, D. K. Menon, A. E. Manktelow, B. J. Sahakian, E. A. Stamatakis, “Default mode dynamics for global functional integration”, J. Neurosci, 35 (2015), 15254–15262
[308] L. Douw, D. G. Wakeman, N. Tanaka, H. Liu, S. M. Stufflebeam, “State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility”, Neuroscience, 339 (2016), 12–21
[309] T. Ossandn, K. Jerbi, J. R. Vidal, D. J. Bayle, Henaff M.A, J. Jung, L. Minotti, O. Bertrand, P. Kahane, J. P. Lachaux, “Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance”, J. Neurosci., 31 (2011), 14521–14530
[310] A. P. Baker, Brookes M.J, I. A. Rezek, S. M. Smith, T. Behrens, P. J. Smith, M. Woolrich, “Fast transient networks in spontaneous human brain activity”, Elife, 3 (2014), e01867
[311] R. Hari, L. Parkkonen, “The brain timewise: how timing shapes and supports brain function”, Philos. Trans. R Soc. London, B Biol. Sci, 370 (2015)
[312] C. A. Runyan, E. Piasini, S. Panzeri, C. D. Harvey, “Distinct timescales of population coding across cortex”, Nature., 548 (2017), 92–96
[313] K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, R. J. Ilmoniemi, “Long-range temporal correlations and scaling behavior in human brain oscillations”, J. Neurosci., 21 (2001), 1370–1377
[314] C. Glover, G.H. Chang, “Time-frequency dynamics of resting-state brain connectivity measured with fMRI”, Neuroimage, 50 (2010), 81–98
[315] U. Hasson, J. Chen, C. J. Honey, “Hierarchical process memory: memory as an integral component of information processing”, Trends Cogn. Sci., 19 (2015), 304–313
[316] D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson, S. T. Grafton, “Dynamic reconfiguration of human brain networks during learning”, Proc. Natl. Acad. Sci. USA, 108 (2011), 7641–7646
[317] D. S. Bassett, M. Yang, N. F. Wymbs, S. T. Grafton, “Learning-induced autonomy of sensorimotor systems”, Nat. Neurosci., 18 (2015), 744–751
[318] R. A. Poldrack, T. O. Laumann, O. Koyejo, B. Gregory, A. Hover, M. Y. Chen, K. J. Gorgolewski, J. Luci, S. J. Joo, R. L. Boyd et al, “Long-term neural and physiological phenotyping of a single human”, Nat. Commun, 6 (2015), 8885
[319] R. F. Betzel, L. Byrge, Y. He, J. Goi, X. N. Zuo, Sporns O., “Changes in structural and functional connectivity among resting-state networks across the human lifespan”, Neuroimage, 102 (2014), 345–357
[320] B. M. Gu, H. van Rijn, W. H. Meck, “Oscillatory multiplexing of neural population codes for interval timing and working memory”, Neurosci. Biobehav. Rev, 48 (2015), 160–185
[321] S. J. Kiebel, J. Daunizeau, K. J. Friston, “Driving the brain towards creativity and intelligence: A network control theory analysis”, Neuropsychologia, 118 (2008), 79–90
[322] G. J. Stephens, C. J. Honey, U. Hasson, “A place for time: the spatiotemporal structure of neural dynamics during natural audition”, J. Neurophysiol., 110 (2013), 2019–2026
[323] L. Cocchi, M. V. Sale, L. Gollo, P. T. Bell, V. T. Nguyen, A. Zalesky, M. Breakspear, J. B. Mattingley, “A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields”, Elife, 6 (2016), e15252
[324] R. Chaudhuri, K. Knoblauch, M. A. Gariel, H. Kennedy, X. J. Wang, “A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex”, Neuron, 88 (2015), 419–431
[325] M. G. Mattar, D. A. Kahn, S. L. Thompson-Schill, G. K. Aguirre, “Varying timescales of stimulus integration unite neural adaptation and prototype formation”, Curr. Biol., 26 (2016), 1669–1676
[326] A. Ponce-Alvarez, B. J. He, P. Hagmann, G. Deco, “Task-driven activity reduces the cortical activity space of the brain: experiment and whole-brain modeling”, PLoS Comput. Biol, 11 (2015), e1004445
[327] M. Bola, B. A. Sabel, “Dynamic reorganization of brain functional networks during cognition”, Neuroimage, 114 (2015), 398–413
[328] R. T. Canolty, R. T. Knight, “The functional role of cross-frequency coupling”, Trends Cogn. Sci., 14 (2010), 506–515
[329] M. R. Brier, J. B. Thomas, B. M. Ances, “Network dysfunction in Alzheimer's disease: refining the disconnection hypothesis”, Brain Connect., 4 (2014), 299–311
[330] L. Geerligs, R. J. Renken, E. Saliasi, N. M. Maurits, M. M. Lorist, “A brain-wide study of age-related changes in functional connectivity”, Cerebr. Cortex, 25 (2015), 1987–1999
[331] R. Esposito, F. Cieri, P. Chiacchiaretta, N. Cera, M. Lauriola, M. Di Giannantonio, A. Tartaro, A. Ferretti, “Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients”, Brain Imaging Behav., 12 (2017), 127–141
[332] R. N. Spreng, W. D. Stevens, J. D. Viviano, D. L. Schacter, “Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest”, Neurobiol. Aging., 45 (2016), 149–160
[333] B. T. Yeo, J. Tandi, M. W. Chee, “Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation”, Neuroimage, 111 (2015), 147–158
[334] E. Tagliazucchi, M. Behrens, H. Laufs, “Sleep neuroimaging and models of consciousness”, Front. Psychol, 4 (2013), 256
[335] J. Kinnison, S. Padmala, J. M. Choi, L. Pessoa, “Network analysis reveals increased integration during emotional and motivational processing”, J. Neurosci., 32 (2012), 8361–8372
[336] D. Godwin, R. L. Barry, R. Marois, “Breakdown of the brain's functional network modularity with awareness”, Proc. Natl. Acad. Sci. USA, 112 (2015), 3799–3804
[337] A. J. Westphal, W. Wang, J. Rissman, “Episodic memory retrieval benefits from a less modular brain network organization”, J. Neurosci., 7 (2017), 3523–3531
[338] S. Sadaghiani, J. B. Poline, A. Kleinschmidt, M. D'Esposito, “Ongoing dynamics in large scale functional connectivity predict perception”, Proc. Natl. Acad. Sci. USA., 112 (2015), 8463–8468
[339] G. J. Yang, J. D. Murray, X. J. Wang, D. C. Glahn, G. D. Pearlson, G. Repovs, J. H. Krystal, A. Anticevic, “Functional hierarchy underlies preferential connectivity disturbances in schizophrenia”, Proc. Natl. Acad. Sci.USA., 13 (2016), 219–228
[340] Q. Yu, J. Sui, K. A. Kiehl, G. Pearlson, V. D. Calhoun, “State-related functional integration and functional segregation brain networks in schizophrenia”, Schizophr. Res., 150 (2013), 450–458
[341] J. M. Li, W. J. Bentley, L. H. Snyder, “Functional connectivity arises from a slow rhythmic mechanism”, Proc. Natl. Acad. Sci. USA, 112 (2015), 2527–2535
[342] L. J. Hearne, L. Cocchi, A. Zalesky, J. B. Mattingley, “Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning”, J. Neurosci., 37 (2017), 8399–8411
[343] G. L. Baum, R. Ciric, D. R. Roalf, R. F. Betzel, T. M. Moore, R. T. Shinohara, A. E. Kahn, S. N. Vandekar, P. E. Rupert, M. Quarmley et al, “Modular segregation of structural brain networks supports the development of executive function in youth”, Curr. Biol., 27 (2017), 1561–1572
[344] X. Di, B. B. Biswal, “Dynamic brain functional connectivity modulated by resting-state networks”, Brain Struct. Funct., 220 (2015), 37–46
[345] J. M. Shine, P. G. Bissett, P. T. Bell, O. Koyejo, J. H. Balsters, K. J. Gorgolewski, C. A. Moodie, R. A. Poldrack, “The dynamics of functional brain networks: integrated network states during cognitive task performance”, Neuron, 92 (2016), 544–554
[346] J.R. Cohen, M. D'Esposito, “The segregation and integration of distinct brain networks and their relationship to cognition”, J. Neurosci., 36 (2016), 12083–12094
[347] H. Mohr, U. Wolfensteller, R. F. Betzel, B. Miic, O. Sporns, J. Richiardi, H. Ruge, “Integration and segregation of large-scale brain networks during short-term task automatization”, Nat. Commun, 3 (2016), 13217
[348] C. L. Gallen, P. L. Baniqued, S. B. Chapman, S. Aslan, M. Keebler, N. Didehbani, M. D'Esposito, “Modular brain network organization predicts response to cognitive training in older adults”, PLoS One, 11 (2016), e0169015
[349] E. Bullmore, O. Sporns, “The economy of brain network organization”, Nat. Rev. Neurosci., 13 (2012), 336–349
[350] A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. Breakspear, “Time-resolved resting state brain networks”, Proc. Natl. Acad. Sci. USA, 111 (2014), 10341–10346
[351] P. Barttfeld, L. Uhrig, J. D. Sitt, M. Sigman, B. Jarraya, S. Dehaene, “Signature of consciousness in the dynamics of resting-state brain activity”, Proc. Natl. Acad. Sci. USA, 112 (2015), 887–892
[352] L. Mudrik, N. Faivre, C. Koch, “Information integration without awareness”, Trends Cogn. Sci., 18 (2014), 488–496
[353] L. Mudrik, A. Breska, D. Lamy, L. Y. Deouell, “Integration without awareness: expanding the limits of unconscious processing”, Psychol. Sci., 22 (2011), 764–770
[354] N. Faivre, L. Mudrik, N. Schwartz, C. Koch, “Multisensory integration in complete unawareness: evidence from audiovisual congruency priming”, Psychol. Sci., 25 (2014), 2006–2016
[355] M. W. Cole, Reynolds J.R, J. D. Power, G. Repovs, A. Anticevic, T. S. Braver, “Multi-task connectivity reveals flexible hubs for adaptive task control”, Nat. Neurosci., 16 (2013), 1348–1355
[356] B. R. Geib, M. L. Stanley, N. A. Dennis, M. G. Woldorff, R. Cabeza, “From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval”, Hum. Brain Mapp., 38 (2017), 2242–2259
[357] M. W. Cole, T. Yarkoni, G. Repovs, A. Anticevic, T. S. Braver, “Global connectivity of prefrontal cortex predicts cognitive control and intelligence”, J. Neurosci., 32 (2012), 8988–8999
[358] T. Sugihara, M. D. Diltz, B. B. Averbeck, L. M. Romanski, “Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex”, J. Neurosci., 26 (2006), 11138–11147
[359] Y. Liao, J. Tang, J. Liu, A. Xie, M. Yang, M. Johnson, X. Wang, Q. Deng, H. Chen, X. Xiang, T. Liu, X. Chen, M. Song, W. Hao, “Decreased Thalamocortical Connectivity in Chronic Ketamine Users”, PLoS One, 11 (2016), e0167381
[360] X. Liao, M. Cao, M. Xia, Y. He, “Individual differences and time-varying features of modular brain architecture”, Neuroimage, 152 (2017), 94–107
[361] K. Gopinath, V. Krishnamurthy, R. Cabanban, B. A. Crosson, “Hubs of anticorrelation in high-resolution resting-state functional connectivity network architecture”, Brain Connect., 5 (2015), 267–275
[362] P. Stratton, J. Wiles, “Global segregation of cortical activity and metastable dynamics”, Front. Syst. Neurosci, 9 (2015), 362
[363] Shen Ren, Junhua Li, F. Taya, J. deSouza, N. V. Thakor, A. Bezerianos, “Dynamic functional segregation and integration in human brain network during complex tasks”, IEEE Trans. Neur. Syst. Rehabil. Eng., 25 (2017), 547–556
[364] G. S. Wig, “Segregated systemsof human brainnetworks”, Trends Cogn Sci., 21 (2017), 981–996
[365] J.A. Kelso, “Multistability and metastability: understanding dynamic coordination in the brain”, Philos. Trans. R Soc. London, B Biol. Sci., 367 (2012), 906–918
[366] J. Cruzat, G. Deco, A. Tauste-Campo, A. Principe, A. Costa, M. L. Kringelbach, R. Rocamora, “The dynamics of human cognition: increasing global integration coupled with decreasing segregation found using iEEG”, Neuroimage, 172 (2018), 492–505
[367] L. Cocchi, A. Zalesky, A. Fornito, J. B. Mattingley, “Dynamic cooperation and competition between brain systems during cognitive control”, Trends Cogn. Sci., 17 (2013), 493–501
[368] M. L. Dixon, R. Thiruchselvam, R. Todd, K. Christoff, “Emotion and the prefrontal cortex: An integrative review”, Psychol. Bull., 143 (2017), 1033–1081
[369] A. G. Zippo, P. A. Della Rosa, I. Castiglioni, G. E.M. Biella, “Alternating dynamics of segregation and integration in human eeg functional networks during working-memory task”, Neuroscience, 371 (2018), 191–206
[370] M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks”, Neuroimage, 146 (2017), 367–375
[371] A. G. Casali, O. Gosseries, M. Rosanova, M. Boly, S. Sarasso, K. R. Casali, S. Casarotto, M. A. Bruno, S. Laureys, G. Tononi, M. Massimini, “A theoretically based index of consciousness independent of sensory processing and behavior”, Sci. Transl. Med, 5 (2013), 198ra105
[372] M. Konishi, D. G. McLaren, H. Engen, J. Smallwood, “Shaped by the past: The default mode network supports cognition that is independent of immediate perceptual input”, PLoS One, 10 (2015), e0132209
[373] P. Fransson, “How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations”, Neuropsychologia, 44 (2006), 2836–2845
[374] J. M. Shine, R. Keogh, C. O'Callaghan, A. J. Muller, S. J. Lewis, J. Pearson, “Imagine that: elevated sensory strength of mental imagery in individuals with Parkinson's disease and visual hallucinations”, Proc. Biol. Sci, 282 (2015), 20142047
[375] P. J. Hellyer, G. Scott, M. Shanahan, D. J. Sharp, R. Leech, “Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome”, J. Neurosci., 35 (2015), 9050–9063
[376] A. Kucyi, M. J. Hove, M. Esterman, R. M. Hutchison, EM. Valera, “Dynamic brain network correlates of spontaneous fluctuations in attention”, Cerebr. Cortex., 27 (2017), 1831–1840
[377] Q. Yue, R. C. Martin, S. Fischer-Baum, A. I. Ramos-Nuez, F. Ye, Deem M. W., “Brain modularity mediates the relation between task complexity and performance”, J. Cogn. Neurosci., 29 (2017), 1532–1546
[378] W. H. Thompson, P. Fransson, “The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain”, Neuroimage, 121 (2015), 227–242
[379] E. Florin, S. Baillet, “The brain's resting-state activity is shaped by synchronized cross frequency coupling of neural oscillations”, Neuroimage, 111 (2015), 26–35
[380] D. Popa, A. T. Popescu, Par D., “Contrasting activity profile of two distributed cortical networks as a function of attentional demands”, J. Neurosci., 29 (2009), 1191–1201
[381] Sara S. J., “Sleep to Remember”, J. Neurosci, 37 (2017), 457–463
[382] K. Finc, K. Bonna, M. Lewandowska, T. Wolak, J. Nikadon, J. Dreszer, W. Duch, Khn S., “Transition of the functional brain network related to increasing cognitive demands”, Hum. Brain Mapp., 38 (2017), 3659–3674
[383] A. M. Kelly, L. Q. Uddin, B. B. Biswal, F. X. Castellanos, M. P. Milham, “Competition between functional brain networks mediates behavioral variability”, Neuroimage, 39 (2008), 527–537
[384] E. Amico, D. Marinazzo, C. Di Perri, L. Heine, J. Annen, C. Martial, M. Dzemidzic, M. Kirsch, V. Bonhomme, S. Laureys, Goi J., “Mapping the functional connectome traits of levels of consciousness”, Neuroimage, 148 (2017), 201–211
[385] A. E. Hudson, D. P. Calderon, D. W. Pfaff, A. Proekt, “Recovery of consciousness is mediated by a network of discrete metastable activity states”, Proc. Natl. Acad. Sci. USA, 111 (2014), 9283–9288
[386] P. Sharp, D. Melcher, C. Hickey, “Endogenous attention modulates the temporal window of integration”, Atten. Percept. Psychophys., 80 (2018), 1214–1228
[387] D. Alns, T. Kaufmann, G. Richard, E. P. Duff, M. H. Sneve, T. Endestad, J. E. Nordvik, O. A. Andreassen, S. M. Smith, Westlye L. T., “Attentional load modulates large-scale functional brain connectivity beyond the core attention networks”, Neuroimage, 109 (2015), 260–272
[388] A. I. Wiesman, E. Heinrichs-Graham, Proskovec A.L, T. J. McDermott, T. Wilson, “Oscillations during observations: Dynamic oscillatory networks .serving visuospatial attention”, Hum. Brain Mapp., 38 (2017), 5128–5140
[389] C. Nakatani, A. Raffone, C. van Leeuwen, “Efficiency of conscious access improves with coupling of slow and fast neural oscillations”, J. Cogn. Neurosci, 26 (2014), 1168–1179
[390] S. M. Doesburg, J. J. Green, J. J. McDonald, L. M. Ward, “Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception”, PLoS One, 4 (2009), e6142
[391] D. De Ridder, van der Loo E, Vanneste S, S. Gais, M. Plazier, S. Kovacs, S. Sunaert, T. Menovsky, P. van de Heyning, “Theta-gamma dysrhythmia and auditory phantom perception”, J. Neurosurg., 114 (2011), 912–921
[392] N. C. Swann, C. de Hemptinne, R. B. Maher, C. A. Stapleton, L. Meng, A. W. Gelb, P. A. Starr, “Motor system interactions in the beta band decrease during loss of consciousness”, J. Cogn. Neurosci., 28 (2016), 84–95
[393] J. Wiley, A. F. Jarosz, “How working memory capacity affects problem solving”, The psychology of learning and motivation, ed. Ross B.H., Elsevier Academic Press, 2012, 185–227
[394] K. Vytal, S. Hamann, “Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis”, J. Cogn. Neurosci., 22 (2010), 2864–2885
[395] H. Saarimki, A. Gotsopoulos, I. P. Jskelinen, J. Lampinen, P. Vuilleumier, R. Hari, M. Sams, Nummenmaa L., “Discrete neural signatures of basic emotions”, Cerebr. Cortex., 26 (2016), 2563–2573
[396] M. L. Kringelbach, K. C. Berridge, “The affective core of emotion: Linking pleasure, subjective well-being, and optimal metastability in the brain”, Emot. Rev., 9 (2017), 191–199
[397] J. Storbeck, R. Maswood, “Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control”, Cogn. Emot., 30 (2016), 925–938
[398] M. G. Mattar, M. W. Cole, S. L. Thompson-Schill, D. S. Bassett, “A functional cartography of cognitive systems”, PLoS Comput. Biol, 11 (2015), e1004533