Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a22, author = {V. I. Tychkova and V. Leonenko and D. M. Danilenko}, title = {Predictive modeling of respiratory virus evolution: {Current} capabilities and limitations}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {579--592}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a22/} }
TY - JOUR AU - V. I. Tychkova AU - V. Leonenko AU - D. M. Danilenko TI - Predictive modeling of respiratory virus evolution: Current capabilities and limitations JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 579 EP - 592 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a22/ LA - ru ID - MBB_2024_19_a22 ER -
%0 Journal Article %A V. I. Tychkova %A V. Leonenko %A D. M. Danilenko %T Predictive modeling of respiratory virus evolution: Current capabilities and limitations %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 579-592 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a22/ %G ru %F MBB_2024_19_a22
V. I. Tychkova; V. Leonenko; D. M. Danilenko. Predictive modeling of respiratory virus evolution: Current capabilities and limitations. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 579-592. http://geodesic.mathdoc.fr/item/MBB_2024_19_a22/
[1] Global Burden of Disease Study 2013 Collaborators, “Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013”, Lancet, 386:9995 (2015), 743–800 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(15)60692-4'>10.1016/S0140-6736(15)60692-4</ext-link>
[2] Waterer G., “The global burden of respiratory infectious diseases before and beyond COVID”, Respirology, 28:2 (2023), 95–96 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/resp.14423'>10.1111/resp.14423</ext-link>
[3] AdaborE. S., “Astatistical analysis of antigenic similarity among influenzaA(H3N2) viruses”, Heliyon, 7:11 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.heliyon.2021.e08384'>10.1016/j.heliyon.2021.e08384</ext-link>
[4] Russell C.A, T. C. Jones, I. G. Barr, N. J. Cox, R. J. Garten, V. Gregory, I. D. Gust, A. W. Hampson, Hay A.J, Hurt A.C et al, “Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses”, Vaccine, 26 (2008), D31-D34 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.vaccine.2008.07.078'>10.1016/j.vaccine.2008.07.078</ext-link>
[5] W. K. WHO Writing Group; Ampofo, N. Baylor, S. Cobey, N. J. Cox, N. J. Cox, S. Daves, S. Edwards, N. Ferguson, G. Grohmann, A. Hay, J. Katz et al, “Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14-16 June 2010”, Influenza Other Respir. Viruses, 6:2 (2012), 142–152 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1750-2659.2011.00277.x'>10.1111/j.1750-2659.2011.00277.x</ext-link>
[6] W. Zhang, S. Hirve, M. P. Kieny, “Seasonal vaccines- Critical path to pandemic influenza response”, Vaccine, 35 (2017), 851–852
[7] Technical Advisory Group on COVID-19 Vaccine Composition Home Page, (data obrascheniya: 20.11.2024) <ext-link ext-link-type='uri' href='https://www.who.int/groups/technical-advisory-group-on-covid-19-vaccine-composition-(tag-co-vac)'>https://www.who.int/groups/technical-advisory-group-on-covid-19-vaccine-composition-(tag-co-vac)</ext-link>
[8] V. Petrova, C. Russell, “The evolution of seasonal influenza viruses”, Nat. Rev. Microbiol, 16 (2018), 47–60 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrmicro.2017.118'>10.1038/nrmicro.2017.118</ext-link>
[9] Morris D.H, K. M. Gostic, S. Pompei, T. Bedford, M. Luksza, R. A. Neher, B. T. Grenfell, M. Lassig, J. W. McCauley, “Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology”, Trends Microbiol, 26:2 (2018), 102–118 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tim.2017.09.004'>10.1016/j.tim.2017.09.004</ext-link>
[10] S. Gouma, E. M. Anderson, S. E. Hensley, “Challenges of Making Effective Influenza Vaccines”, Annu. Rev. Virol, 7:1 (2020), 495–512 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-virology-010320-044746'>10.1146/annurev-virology-010320-044746</ext-link>
[11] B. Dadonaite, J. J. Ahn, J. T. Ort, J. Yu, C. Furey, A. Dosey, W. W. Hannon, A. L. Vincent Baker, R. J. Webby et al, “Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance”, PLoS Biology, 22:11 (2024), e3002916 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.3002916'>10.1371/journal.pbio.3002916</ext-link>
[12] T. N. Starr, A. J. Greaney, S. K. Hilton, D. Ellis, K. H.D. Crawford, A. S. Dingens, M. J. Navarro, J. E. Bowen, M. A. Tortorici, A. C. Walls et al, “Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding”, Cell, 182:5 (2020), 1295–1310.E20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2020.08.012'>10.1016/j.cell.2020.08.012</ext-link>
[13] T. A. Timofeeva, I. A. Rudneva, N. F. Lomakina, E. B. Timofeeva, I. M. Kupriyanova, A. V. Lyashko, D. N. Shcherbinin, A. A. Shilov, M. M. Shmarov, E. L. Ryazanova, L. V. Mochalova, B. I. Timofeev, “Mutations in the genome of avian influenza viruses of the H1 and H5 subtypes responsible for adaptation to mammals”, MIR J, 8:1 (2021), 50–61 <ext-link ext-link-type='doi' href='https://doi.org/10.18527/2500-2236-2021-8-1-50-61'>10.18527/2500-2236-2021-8-1-50-61</ext-link>
[14] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, “Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor”, Nature, 581 (2020), 215–220 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-020-2180-5'>10.1038/s41586-020-2180-5</ext-link>
[15] S. Di Franco, P. Bianca, D. S. Sardina, A. Turdo, M. Gaggianesi, V. Veschi, A. Nicotra, L. R. Mangiapane, M. L. Iacono, I. Pillitteri et al, “Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery”, Nat. Commun, 12 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-021-25333-9'>10.1038/s41467-021-25333-9</ext-link>
[16] A. Rambaut, O. Pybus, M. Nelson, C. Viboud, J. K. Taubenberger, E. C. Holmes, “The genomic and epidemiological dynamics of human influenza A virus”, Nature, 453 (2008), 615–619 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature06945'>10.1038/nature06945</ext-link>
[17] Z. Ning, Z. Nan, F. Huafeng, D. Jie, X. Xingyu, D. Xiaoqing, D. Xiaoxiao, X. Dandan, M. Xiaoyu, YanY, G. Hongjin, M. Lingfeng, H. Min, “Mutations and PhylogeneticAnalyses of SARS-CoV-2 Among Imported COVID-19 From Abroad in Nanjing, China”, Frontiers in Microbiology, 13 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmicb.2022.851323'>10.3389/fmicb.2022.851323</ext-link>
[18] N. Lefrancq, L. Duret, V. Bouchez, S. Brisse, J. Parkhill, H. Salje, Learning the fitness dynamics of pathogens from phylogenies, medRxiv, 2023 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/2023.12.23.23300456'>10.1101/2023.12.23.23300456</ext-link>
[19] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, “SWISS-MODEL: homology modelling of protein structures and complexes”, Nucleic Acids Research, 46:W1 (2018), W296-W303 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gky427'>10.1093/nar/gky427</ext-link>
[20] V. P. Waman, P. Ashford, S. D. Lam, N. Sen, M. Abbasian, L. Woodridge, Y. Goldtzvik, N. Bordin, J. Wu, I. Sillitoe, C. A. Orengo, “Predicting human and viral protein variants affecting COVID-19 susceptibility and repurposing therapeutics”, Scientific Reports, 14:1 (2024), 14208
[21] A. K. Padhi, P. Kalita, S. Maurya, K. M. Poluri, T. Tripathi, “From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics”, J. Phys. Chem. B, 127:41 (2023), 8717–8735 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.jpcb.3c04542'>10.1021/acs.jpcb.3c04542</ext-link>
[22] J. Li, S. Zhang, B. Li, Y. Hu, X. P. Kang, X. Y. Wu, M. T. Huang, Y. C. Li, Z. P. Zhao, C. F. Qin, T. Jiang, “Machine learning methods for predicting human-adaptive influenza a viruses based on viral nucleotide compositions”, Molecular biology and evolution, 37:4 (2020), 1224–1236
[23] B. Hie, E. D. Zhong, B. Berger, B. Bryson, “Learning the language of viral evolution and escape”, Science, 371:6526 (2021), 284–288 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1491.68156'>1491.68156</ext-link>
[24] B. P. Holder, P. Simon, L. E. Liao, Y. Abed, X. Bouhy, C. A.A. Beauchemin, G. Boivin, “Assessing the in vitro fitness of an oseltamivir-resistant seasonal A/H1N1 influenza strain using a mathematical model”, PloS One, 6:3 (2011) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0014767'>10.1371/journal.pone.0014767</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1220.35187'>1220.35187</ext-link>
[25] L. Kepler, M. Hamins-Puertolas, D. A. Rasmussen, “Decomposing the sources of SARS-CoV-2 fitness variation in the United States”, Virus Evolution, 7:2 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1093/ve/veab073'>10.1093/ve/veab073</ext-link>
[26] X. Gu, ANew Criteria to Distinguish among Different Selection Modes in Gene Evolution, bioRxiv, 2020 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/2020.02.21.960450'>10.1101/2020.02.21.960450</ext-link>
[27] G. Tonkin-Hill, I. Martincorena, R. Amato, A. R.J. Lawson, M. Gerstung, I. Johnston, D. K. Jackson, N. Park, S. V. Lensing, M. A. Quailet, “al Patterns of within-host genetic diversity in SARS-CoV-2”, eLife, 10 (2021), e66857 <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.66857'>10.7554/eLife.66857</ext-link>
[28] R. Lei, A. Hernandez Garcia, T. J.C. Tan, Q. W. Teo, Y. Wang, X. Zhang, S. Luo, S. K. Nair, J. Peng, N. C. Wu, “Mutational fitness landscape of human influenza H3N2 neuraminidase”, Cell reports, 42:1 (2023), 111951
[29] J. M. Flynn, N. Samant, G. Schneider-Nachum, D. T. Barkan, N. K. Yilmaz, C. A. Schiffer, S. A. Moquin, D. Dovala, D. N.A. Bolon, “Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms”, Elife, 11 (2022), e77433
[30] R. A. Neher, C. A. Russell, B. I. Shraiman, “Predicting evolution from the shape of genealogical trees”, eLife, 3 (2014), e03568 <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.03568'>10.7554/eLife.03568</ext-link>
[31] M. N. Price, P. S. Dehal, A. P. Arkin, “FastTree: computing large minimum evolution trees with profiles instead of a distance matrix”, Molecular biology and evolution, 26:7 (2009), 1641–1650
[32] M. Luksza, M. Lassig, “A predictive fitness model for influenza”, Nature, 507 (2014), 57–61 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature13087'>10.1038/nature13087</ext-link>
[33] T. Bedford, S. Riley, I. G. Barr, S. Broor, M. Chadha, “Global circulation patterns of seasonal influenza viruses vary with antigenic drift”, Nature, 523:7559 (2015), 217–220 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature14460'>10.1038/nature14460</ext-link>
[34] Y. Shu, J. McCauley, “GISAID: Global initiative on sharing all influenza data from vision to reality”, Euro Surveill, 22:13 (2017), 30494 <ext-link ext-link-type='doi' href='https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494'>10.2807/1560-7917.ES.2017.22.13.30494</ext-link>
[35] K. Katoh, D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability”, Molecular biology and evolution, 30:4 (2013), 772–780 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/mst010'>10.1093/molbev/mst010</ext-link>
[36] A. Larsson, “AliView: a fast and lightweight alignment viewer and editor for large datasets”, Bioinformatics, 30:22 (2014), 3276–3278 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btu531'>10.1093/bioinformatics/btu531</ext-link>
[37] E. Aparicio-Puerta, R. Lebron, A. Rueda, C. Gomez-Martin, S. Giannoukakos, D. Jaspez, J. M. Medina, A. Zubkovic, I. Jurak, B. Fromm, J. A. Marchal, J. Oliver, M. Hackenberg, “sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression”, Nucleic Acids Research, 47:W1 (2019), W530-W535 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkz415'>10.1093/nar/gkz415</ext-link>
[38] D. J. Smith, A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan, “Mapping the antigenic and genetic evolution of influenza virus”, Science, 305:5682 (2004), 371–376 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1097211'>10.1126/science.1097211</ext-link>