Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 497-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, the basic mechanisms of myocardial infarction development during its inflammatory phase have been studied using mathematical modelling methods. Complex scenarios associated with multivessel lesions of the coronary bed and variability in baseline indicators of the innate immune system state have been considered. Special attention is paid to methodological issues related to the analysis of the effectiveness of the algorithm for approximate solutions of nonlinear initial-boundary value problems and setting up computational experiments under conditions close to the conditions of laboratory experiments in the field of interest. A numerical analysis was performed of several of the most common variants in laboratory practice of the formation of a large lesion in the left ventricle of the mouse heart, caused by the spatiotemporal heterogeneity of the properties of the environment, the immune reaction and ischemic myocardial damage, including recurrent infarction. The main attention is on the following aspects: – analysis of the mechanism of formation of large-scale infarct damages with an extensive core covering almost the entire infarct focus, or with a relatively small core, and assessment of the role of inflammation in these processes; – analysis of current scenarios of structure formation and the role of nonlinear dynamic structures of demarcation inflammation in the formation of a large but highly structured focus. The obtained data allow us to conclude that there is sufficient conservatism during infarction, evidenced by the basic patterns of the inflammatory phase revealed during modeling. The variability of heart attack scenarios manifests itself as a “memory”-effect about the initial data. We observe the “memory”-effect only at a biologically significant time interval, but we also note a general tendency to switch to the usual scenario of inflammation in large-focal infarction, which eliminates the peculiarities of the initial and individual conditions. The role of inflammation has been investigated in the context of a wave process in which spatial localization and the interaction of density and concentration waves can determine the main features of myocardial damage. In particular, within the framework of the adopted mathematical model, the conditions under which the formation of local zones with a relatively low or, conversely, high level of damage is possible have been described. In our work, we have established a significant interdependence between the formation of quasi-stationary structures and the intensity of the immune response. The high probability of developing severe or even terminal myocardial infarction may be due to the high level of immune system factors, in particular, monocytes-macrophages or cytokines in the reinfarction heart.
@article{MBB_2024_19_a20,
     author = {O. F. Voropaeva and Ch. A. Tsgoev},
     title = {Numerical modelling of myocardial infarction in multivessel coronary lesion. {II.~Patterns} of formation of large-scale damages and structures},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {497--532},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Ch. A. Tsgoev
TI  - Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 497
EP  - 532
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/
LA  - ru
ID  - MBB_2024_19_a20
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Ch. A. Tsgoev
%T Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 497-532
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/
%G ru
%F MBB_2024_19_a20
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 497-532. http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/

[1] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, H. D. White et al, “Fourth universal definition of myocardial infarction”, Circulation, 138:20 (2018), e618–e651 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/CIR.0000000000000617'>10.1161/CIR.0000000000000617</ext-link>

[2] Nepomnyaschikh L.M., Lushnikova E.L., Semenov D.E., Regenerativno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003

[3] Y. Kunita, K. Nakajima, T. Nakata, T. Kudo, S. Kinuya, “Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging”, Annals of Nuclear Medicine, 36 (2022), 674–683 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12149-022-01751-7'>10.1007/s12149-022-01751-7</ext-link>

[4] B. E. Sthli, F. Varbella, B. Schwarz, P. Nordbeck, S. B. Felix, I. M. Lang, A. Toma, M. Moccetti, C. Valina, M. Vercellino, “Rationale and design of the MULTISTARS AMI Trial: A randomized comparison of immediate versus staged complete revascularization in patients with ST-segment elevation myocardial infarction and multivessel disease”, American Heart Journal, 228 (2020), 98–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ahj.2020.07.016'>10.1016/j.ahj.2020.07.016</ext-link>

[5] S. H. Lee, M. H. Jeong, J. H. Ahn, Hyun D.Y, K. H. Cho, M. C. Kim, D. S. Sim, Y. J. Hong, J. H. Kim, Y. Ahn et al, “Predictors of recurrent acute myocardial infarction despite successful percutaneous coronary intervention”, Korean J. Intern. Med, 37:4 (2022), 777–785 <ext-link ext-link-type='doi' href='https://doi.org/10.3904/kjim.2021.427'>10.3904/kjim.2021.427</ext-link>

[6] C. Troidl, H. M?llmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl et al, “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med, 13:9B (2009), 3485–3496 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1582-4934.2009.00707.x'>10.1111/j.1582-4934.2009.00707.x</ext-link>

[7] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res, 167:1 (2016), 152–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.trsl.2015.07.002'>10.1016/j.trsl.2015.07.002</ext-link>

[8] Stafeev Yu.S., Menshikov M.Yu., Tkachuk V.A., Parfenova E.V., “Rol makrofagov v reparatsii miokarda posle povrezhdeniya i perspektivy metabolicheskogo pereprogrammirovaniya immunnykh kletok v tselyakh regulyatsii postinfarktnogo vosstanovleniya miokarda”, Kardiologiya, 57:12 (2017), 53–59

[9] Malyshev I.Yu., “Fenomeny i signalnye mekhanizmy reprogrammirovaniya makrofagov”, Patologicheskaya fiziologiya i eksperimentalnaya terapiya, 59:2 (2015), 99–111

[10] Fedorov A.A., Ermak N.A., Geraschenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheeva M.N., “Polyarizatsiya makrofagov: mekhanizmy, markery i faktory induktsii”, Sibirskii onkologicheskii zhurnal, 21:4 (2022), 124–136 <ext-link ext-link-type='doi' href='https://doi.org/10.21294/1814-4861-2022-21-4-124-136'>10.21294/1814-4861-2022-21-4-124-136</ext-link>

[11] M. Chen, X. Li, S. Wang, L. Yu, J. Tang, S. Zhou, “The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias”, Front. Physiol, 11 (2020), 1113 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fphys.2020.01113'>10.3389/fphys.2020.01113</ext-link>

[12] W. P. Lafuse, D. J. Wozniak, M. V.S. Rajaram, “Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair”, Cells, 10:51 (2020)

[13] Y. Kim, S. Nurakhayev, A. Nurkesh, Z. Zharkinbekov, A. Saparov, “Macrophage polarization in cardiac tissue repair following myocardial infarction”, Int. J. Molecular Sciences, 22 (2021), 51 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms22052715'>10.3390/ijms22052715</ext-link>

[14] Y. Wang, M. Hou, S. Duan, Z. Zhao, X. Wu, Y. Chen, L. Yin, “Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti inflammatory treatment of ischemia-reperfusion (IR) injury”, Bioactive Materials, 17 (2022), 320–333 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bioactmat.2022.01.026'>10.1016/j.bioactmat.2022.01.026</ext-link>

[15] M. A.C. Fontaine, H. Jin, M. Gagliardi, M. Rousch, E. Wijnands, M. Stoll, X. Li, L. Schurgers, C. Reutelingsperger, C. Schalkwijk et al, “Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair”, Advanced Science, 10 (2023), 2203053 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/advs.202203053'>10.1002/advs.202203053</ext-link>

[16] Voropaeva O.F., Tsgoev Ch.A., “Chislennaya model dinamiki faktorov vospaleniya v yadre infarkta miokarda”, Sibirskii zhurnal industrialnoi matematiki, 22:2(78) (2019), 13–26 <ext-link ext-link-type='doi' href='https://doi.org/10.33048/sibjim.2019.22.202'>10.33048/sibjim.2019.22.202</ext-link>

[17] C. A. Tsgoev, O. F. Voropaeva, Y. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 111–126 <ext-link ext-link-type='doi' href='https://doi.org/10.1515/rnam-2020-0009'>10.1515/rnam-2020-0009</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:07207777'>07207777</ext-link>

[18] O. F. Voropaeva, C. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, Journal of Applied Mechanics and Technical Physics, 62:3 (2021), 441–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S002189442103010X'>10.1134/S002189442103010X</ext-link>

[19] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matematicheskaya biologiya i bioinformatika, 18:1 (2023), 49–71 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.49'>10.17537/2023.18.49</ext-link>

[20] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda. II. Analiz mekhanizma polyarizatsii makrofagov kak terapevticheskoi misheni”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 367–404 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.367'>10.17537/2023.18.367</ext-link>

[21] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. I. Analiz nekotorykh modelnykh stsenariev”, Matematicheskaya biologiya i bioinformatika, 19:1 (2024), 183–211 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2024.19.183'>10.17537/2024.19.183</ext-link>

[22] J. Chen, D. K. Ceholski, L. Liang, K. Fish, R. J. Hajjar, “Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice”, Am. J. Physiol. Heart Circ. Physiol, 313 (2017), H275–H282 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/ajpheart.00127.2017'>10.1152/ajpheart.00127.2017</ext-link>

[23] R. H. Anderson, S. Y. Ho, K. Redmann, D. Sanchez-Quintana, P. P. Lunkenheimer, “The anatomical arrangement of the myocardial cells making up the ventricular mass”, European Journal of Cardio-thoracic Surgery, 28 (2005), 517–525 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ejcts.2005.06.043'>10.1016/j.ejcts.2005.06.043</ext-link>

[24] Z. A. Gouda, Y. H. A. Elewa, A. O. Selim, “Histological architecture of cardiac myofibers composing the left ventricle of murine heart”, Journal of Histology & Histopathology, 2 (2015), 2 <ext-link ext-link-type='doi' href='https://doi.org/10.7243/2055-091X-2-2'>10.7243/2055-091X-2-2</ext-link>

[25] P. C. Lin, U. Kreutzer, T. Jue, “Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture”, Biophysical Journal, 92 (2007), 2608–2620 <ext-link ext-link-type='doi' href='https://doi.org/10.1529/biophysj.106.094458'>10.1529/biophysj.106.094458</ext-link>

[26] G. J. Strijkers, A. Bouts, W. M. Blankesteijn, T. H. Peeters, A. Vilanova, M. C. van Prooijen, H. M. Sanders, E. Heijman, K. Nicolay, “Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse”, NMR in Biomedicine, 22 (2009), 182–190 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/nbm.1299'>10.1002/nbm.1299</ext-link>

[27] E. W. Hsu, R. Xue, A. Holmes, J. R. Forder, “Delayed reduction of tissue water diffusion after myocardial ischemia”, Am. J. Physiol. 1998, 275, H697–H702

[28] N. Beyhoff, D. Lohr, A. Foryst-Ludwig, R. Klopfleisch, S. Brix, J. Grune, A. Thiele, L. Erfinanda, A. Tabuchi, W. M. Kuebler, B. Pieske, L. M. Schreiber, U. Kintscher, “Characterization of myocardial microstructure and function in an experimental model of isolated/subendocardial damage”, Hypertension, 74 (2019), 295–304 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/HYPERTENSIONAHA.119.12956'>10.1161/HYPERTENSIONAHA.119.12956</ext-link>

[29] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/cvr/cvu138'>10.1093/cvr/cvu138</ext-link>

[30] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, A. Reddy, N. G. Frangogiannis, “Interleukin-1 Receptor type I signaling critically regulates infarct healing and cardiac remodeling”, Am. J. Pathol, 173 (2008), 57–67 <ext-link ext-link-type='doi' href='https://doi.org/10.2353/ajpath.2008.070974'>10.2353/ajpath.2008.070974</ext-link>

[31] V. L. Zuylen, M. Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015), 336 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s40064-015-1128-y'>10.1186/s40064-015-1128-y</ext-link>

[32] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60

[33] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012)

[34] Yanenko N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otd., Novosibirsk, 1967, 195 pp.

[35] Tikhonov A.N., Samarskii A.A., “Homogeneous difference schemes”, USSR Comput. Math. Math. Phys., 1:1 (1962), 5–67 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0041-5553(62)90005-8'>10.1016/0041-5553(62)90005-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0131.34102'>0131.34102</ext-link>

[36] Voropaeva O.F., Chernykh G.G., “Evolyutsiya zony turbulentnogo smesheniya v zhidkosti s nelineinoi stratifikatsiei”, sb. nauch. tr., Modelirovanie v mekhanike, 3(20), no. 5, AN SSSR. Sib. otd-nie. VTs, ITPM, 1989, 3–29

[37] Voropaeva O.F., “Anizotropnoe vyrozhdenie turbulentnosti v dalnem bezympulsnom slede v stratifitsirovannoi srede”, Matem. modelirovanie, 20:10 (2008), 23–38

[38] S. Cremer, M. J. Schloss, C. Vinegoni, B. H. Foy, S. Zhang, D. Rohde, M. Hulsmans, P. F. Feruglio, S. Schmidt, G. Wojtkiewicz, J. M. Higgins, R. Weissleder, F. K. Swirski, M. Nahrendorf, “Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction”, J. Am. Coll. Cardiol, 75 (2020), 901–915 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jacc.2019.12.056'>10.1016/j.jacc.2019.12.056</ext-link>