Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a20, author = {O. F. Voropaeva and Ch. A. Tsgoev}, title = {Numerical modelling of myocardial infarction in multivessel coronary lesion. {II.~Patterns} of formation of large-scale damages and structures}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {497--532}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/} }
TY - JOUR AU - O. F. Voropaeva AU - Ch. A. Tsgoev TI - Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 497 EP - 532 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/ LA - ru ID - MBB_2024_19_a20 ER -
%0 Journal Article %A O. F. Voropaeva %A Ch. A. Tsgoev %T Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 497-532 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/ %G ru %F MBB_2024_19_a20
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction in multivessel coronary lesion. II.~Patterns of formation of large-scale damages and structures. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 497-532. http://geodesic.mathdoc.fr/item/MBB_2024_19_a20/
[1] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, H. D. White et al, “Fourth universal definition of myocardial infarction”, Circulation, 138:20 (2018), e618–e651 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/CIR.0000000000000617'>10.1161/CIR.0000000000000617</ext-link>
[2] Nepomnyaschikh L.M., Lushnikova E.L., Semenov D.E., Regenerativno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003
[3] Y. Kunita, K. Nakajima, T. Nakata, T. Kudo, S. Kinuya, “Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging”, Annals of Nuclear Medicine, 36 (2022), 674–683 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12149-022-01751-7'>10.1007/s12149-022-01751-7</ext-link>
[4] B. E. Sthli, F. Varbella, B. Schwarz, P. Nordbeck, S. B. Felix, I. M. Lang, A. Toma, M. Moccetti, C. Valina, M. Vercellino, “Rationale and design of the MULTISTARS AMI Trial: A randomized comparison of immediate versus staged complete revascularization in patients with ST-segment elevation myocardial infarction and multivessel disease”, American Heart Journal, 228 (2020), 98–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ahj.2020.07.016'>10.1016/j.ahj.2020.07.016</ext-link>
[5] S. H. Lee, M. H. Jeong, J. H. Ahn, Hyun D.Y, K. H. Cho, M. C. Kim, D. S. Sim, Y. J. Hong, J. H. Kim, Y. Ahn et al, “Predictors of recurrent acute myocardial infarction despite successful percutaneous coronary intervention”, Korean J. Intern. Med, 37:4 (2022), 777–785 <ext-link ext-link-type='doi' href='https://doi.org/10.3904/kjim.2021.427'>10.3904/kjim.2021.427</ext-link>
[6] C. Troidl, H. M?llmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl et al, “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med, 13:9B (2009), 3485–3496 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1582-4934.2009.00707.x'>10.1111/j.1582-4934.2009.00707.x</ext-link>
[7] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res, 167:1 (2016), 152–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.trsl.2015.07.002'>10.1016/j.trsl.2015.07.002</ext-link>
[8] Stafeev Yu.S., Menshikov M.Yu., Tkachuk V.A., Parfenova E.V., “Rol makrofagov v reparatsii miokarda posle povrezhdeniya i perspektivy metabolicheskogo pereprogrammirovaniya immunnykh kletok v tselyakh regulyatsii postinfarktnogo vosstanovleniya miokarda”, Kardiologiya, 57:12 (2017), 53–59
[9] Malyshev I.Yu., “Fenomeny i signalnye mekhanizmy reprogrammirovaniya makrofagov”, Patologicheskaya fiziologiya i eksperimentalnaya terapiya, 59:2 (2015), 99–111
[10] Fedorov A.A., Ermak N.A., Geraschenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheeva M.N., “Polyarizatsiya makrofagov: mekhanizmy, markery i faktory induktsii”, Sibirskii onkologicheskii zhurnal, 21:4 (2022), 124–136 <ext-link ext-link-type='doi' href='https://doi.org/10.21294/1814-4861-2022-21-4-124-136'>10.21294/1814-4861-2022-21-4-124-136</ext-link>
[11] M. Chen, X. Li, S. Wang, L. Yu, J. Tang, S. Zhou, “The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias”, Front. Physiol, 11 (2020), 1113 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fphys.2020.01113'>10.3389/fphys.2020.01113</ext-link>
[12] W. P. Lafuse, D. J. Wozniak, M. V.S. Rajaram, “Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair”, Cells, 10:51 (2020)
[13] Y. Kim, S. Nurakhayev, A. Nurkesh, Z. Zharkinbekov, A. Saparov, “Macrophage polarization in cardiac tissue repair following myocardial infarction”, Int. J. Molecular Sciences, 22 (2021), 51 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms22052715'>10.3390/ijms22052715</ext-link>
[14] Y. Wang, M. Hou, S. Duan, Z. Zhao, X. Wu, Y. Chen, L. Yin, “Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti inflammatory treatment of ischemia-reperfusion (IR) injury”, Bioactive Materials, 17 (2022), 320–333 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bioactmat.2022.01.026'>10.1016/j.bioactmat.2022.01.026</ext-link>
[15] M. A.C. Fontaine, H. Jin, M. Gagliardi, M. Rousch, E. Wijnands, M. Stoll, X. Li, L. Schurgers, C. Reutelingsperger, C. Schalkwijk et al, “Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair”, Advanced Science, 10 (2023), 2203053 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/advs.202203053'>10.1002/advs.202203053</ext-link>
[16] Voropaeva O.F., Tsgoev Ch.A., “Chislennaya model dinamiki faktorov vospaleniya v yadre infarkta miokarda”, Sibirskii zhurnal industrialnoi matematiki, 22:2(78) (2019), 13–26 <ext-link ext-link-type='doi' href='https://doi.org/10.33048/sibjim.2019.22.202'>10.33048/sibjim.2019.22.202</ext-link>
[17] C. A. Tsgoev, O. F. Voropaeva, Y. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 111–126 <ext-link ext-link-type='doi' href='https://doi.org/10.1515/rnam-2020-0009'>10.1515/rnam-2020-0009</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:07207777'>07207777</ext-link>
[18] O. F. Voropaeva, C. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, Journal of Applied Mechanics and Technical Physics, 62:3 (2021), 441–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S002189442103010X'>10.1134/S002189442103010X</ext-link>
[19] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matematicheskaya biologiya i bioinformatika, 18:1 (2023), 49–71 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.49'>10.17537/2023.18.49</ext-link>
[20] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda. II. Analiz mekhanizma polyarizatsii makrofagov kak terapevticheskoi misheni”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 367–404 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.367'>10.17537/2023.18.367</ext-link>
[21] Voropaeva O.F., Tsgoev Ch.A., “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. I. Analiz nekotorykh modelnykh stsenariev”, Matematicheskaya biologiya i bioinformatika, 19:1 (2024), 183–211 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2024.19.183'>10.17537/2024.19.183</ext-link>
[22] J. Chen, D. K. Ceholski, L. Liang, K. Fish, R. J. Hajjar, “Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice”, Am. J. Physiol. Heart Circ. Physiol, 313 (2017), H275–H282 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/ajpheart.00127.2017'>10.1152/ajpheart.00127.2017</ext-link>
[23] R. H. Anderson, S. Y. Ho, K. Redmann, D. Sanchez-Quintana, P. P. Lunkenheimer, “The anatomical arrangement of the myocardial cells making up the ventricular mass”, European Journal of Cardio-thoracic Surgery, 28 (2005), 517–525 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ejcts.2005.06.043'>10.1016/j.ejcts.2005.06.043</ext-link>
[24] Z. A. Gouda, Y. H. A. Elewa, A. O. Selim, “Histological architecture of cardiac myofibers composing the left ventricle of murine heart”, Journal of Histology & Histopathology, 2 (2015), 2 <ext-link ext-link-type='doi' href='https://doi.org/10.7243/2055-091X-2-2'>10.7243/2055-091X-2-2</ext-link>
[25] P. C. Lin, U. Kreutzer, T. Jue, “Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture”, Biophysical Journal, 92 (2007), 2608–2620 <ext-link ext-link-type='doi' href='https://doi.org/10.1529/biophysj.106.094458'>10.1529/biophysj.106.094458</ext-link>
[26] G. J. Strijkers, A. Bouts, W. M. Blankesteijn, T. H. Peeters, A. Vilanova, M. C. van Prooijen, H. M. Sanders, E. Heijman, K. Nicolay, “Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse”, NMR in Biomedicine, 22 (2009), 182–190 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/nbm.1299'>10.1002/nbm.1299</ext-link>
[27] E. W. Hsu, R. Xue, A. Holmes, J. R. Forder, “Delayed reduction of tissue water diffusion after myocardial ischemia”, Am. J. Physiol. 1998, 275, H697–H702
[28] N. Beyhoff, D. Lohr, A. Foryst-Ludwig, R. Klopfleisch, S. Brix, J. Grune, A. Thiele, L. Erfinanda, A. Tabuchi, W. M. Kuebler, B. Pieske, L. M. Schreiber, U. Kintscher, “Characterization of myocardial microstructure and function in an experimental model of isolated/subendocardial damage”, Hypertension, 74 (2019), 295–304 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/HYPERTENSIONAHA.119.12956'>10.1161/HYPERTENSIONAHA.119.12956</ext-link>
[29] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/cvr/cvu138'>10.1093/cvr/cvu138</ext-link>
[30] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, A. Reddy, N. G. Frangogiannis, “Interleukin-1 Receptor type I signaling critically regulates infarct healing and cardiac remodeling”, Am. J. Pathol, 173 (2008), 57–67 <ext-link ext-link-type='doi' href='https://doi.org/10.2353/ajpath.2008.070974'>10.2353/ajpath.2008.070974</ext-link>
[31] V. L. Zuylen, M. Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015), 336 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s40064-015-1128-y'>10.1186/s40064-015-1128-y</ext-link>
[32] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60
[33] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012)
[34] Yanenko N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otd., Novosibirsk, 1967, 195 pp.
[35] Tikhonov A.N., Samarskii A.A., “Homogeneous difference schemes”, USSR Comput. Math. Math. Phys., 1:1 (1962), 5–67 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0041-5553(62)90005-8'>10.1016/0041-5553(62)90005-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0131.34102'>0131.34102</ext-link>
[36] Voropaeva O.F., Chernykh G.G., “Evolyutsiya zony turbulentnogo smesheniya v zhidkosti s nelineinoi stratifikatsiei”, sb. nauch. tr., Modelirovanie v mekhanike, 3(20), no. 5, AN SSSR. Sib. otd-nie. VTs, ITPM, 1989, 3–29
[37] Voropaeva O.F., “Anizotropnoe vyrozhdenie turbulentnosti v dalnem bezympulsnom slede v stratifitsirovannoi srede”, Matem. modelirovanie, 20:10 (2008), 23–38
[38] S. Cremer, M. J. Schloss, C. Vinegoni, B. H. Foy, S. Zhang, D. Rohde, M. Hulsmans, P. F. Feruglio, S. Schmidt, G. Wojtkiewicz, J. M. Higgins, R. Weissleder, F. K. Swirski, M. Nahrendorf, “Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction”, J. Am. Coll. Cardiol, 75 (2020), 901–915 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jacc.2019.12.056'>10.1016/j.jacc.2019.12.056</ext-link>