Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a2, author = {A. D. Tsvetkova and D. Yu. Shvets and Kh. G. Musin and B. R. Kuluev}, title = {Modeling of the structure of the {tRolC} protein of {\emph{Nicotiana} tabacum} and its functional relation to other proteins}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {322--337}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a2/} }
TY - JOUR AU - A. D. Tsvetkova AU - D. Yu. Shvets AU - Kh. G. Musin AU - B. R. Kuluev TI - Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 322 EP - 337 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a2/ LA - ru ID - MBB_2024_19_a2 ER -
%0 Journal Article %A A. D. Tsvetkova %A D. Yu. Shvets %A Kh. G. Musin %A B. R. Kuluev %T Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 322-337 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a2/ %G ru %F MBB_2024_19_a2
A. D. Tsvetkova; D. Yu. Shvets; Kh. G. Musin; B. R. Kuluev. Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 322-337. http://geodesic.mathdoc.fr/item/MBB_2024_19_a2/
[1] L. Otten, “The Agrobacterium phenotypic plasticity (plast) genes”, Current Topics in Microbiology and Immunology, 418 (2018), 375–419 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/82_2018_93'>10.1007/82_2018_93</ext-link>
[2] A. D. Meyer, T. Ichikawa, F. Meins, “Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene”, Molecular & General genetics: MGG, 249:3 (1995), 265–273 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00290526'>10.1007/BF00290526</ext-link>
[3] G. R. Gumerova, A. V. Chemeris, Yu. M. Nikonorov, B. R. Kuluev, “Morfologicheskii i molekulyarnyi analiz izolirovannykh kultur adventivnykh kornei tabaka, poluchennykh metodami bioballisticheskoi bombardirovki i agrobakterialnoi transformatsii”, Fiziologiya rastenii, 65:5 (2018), 376–387 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S001533031805007X'>10.1134/S001533031805007X</ext-link>
[4] B. R. Kuluev, Kh. G. Musin, E. A. Baimukhametova, “Vklad gena tROLC v regulyatsiyu rosta tabaka pri deistvii stressovykh faktorov”, Biomics, 13:3 (2021), 360–367 <ext-link ext-link-type='doi' href='https://doi.org/10.31301/2221-6197.bmcs.2021-25'>10.31301/2221-6197.bmcs.2021-25</ext-link>
[5] H. Mohajjel-Shoja, B. Clement, J. Perot, M. Alioua, L. Otten, “Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes”, Molecular Plant-Microbe Interactions: MPMI, 24:1 (2011), 44–53 <ext-link ext-link-type='doi' href='https://doi.org/10.1094/MPMI-06-10-0139'>10.1094/MPMI-06-10-0139</ext-link>
[6] B. T. Favero, Y. Tan, Y. Lin, H. B. Hansen, N. Shadmani, J. Xu, J. He, R. Muller, A. Almeida, H. Lutken, “Transgenic Kalanchoe blossfeldiana, containing individual rol genes and open reading frames under 35S promoter, exhibit compact habit, reduced plant growth, and altered ethylene tolerance in flowers”, Frontiers in Plant Science, 12 (2021), 672023 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fpls.2021.672023'>10.3389/fpls.2021.672023</ext-link>
[7] Yu. Shkryl, G. Veremeichik, T. Avramenko, T. Gorpenchenko, G. Tchernoded, V. Bulgakov, “Transcriptional regulation of enzymes involved in ROS metabolism and abiotic stress resistance in rolC-transformed cell cultures”, Plant Growth Regulation, 97 (2022), 485–497 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10725-022-00812-1'>10.1007/s10725-022-00812-1</ext-link>
[8] S. Kitakura, T. Fujita, Y. Ueno, S. Terakura, H. Wabiko, Y. Machida, “The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco”, The Plant Cell, 14:2 (2002), 451–463 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.010360'>10.1105/tpc.010360</ext-link>
[9] J. J. Estruch, D. Chriqui, K. Grossmann, J. Schell, A. Spena, “The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates”, The EMBO Journal, 10:10 (1991), 2889–2895 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/j.1460-2075.1991.tb07838.x'>10.1002/j.1460-2075.1991.tb07838.x</ext-link>
[10] T. V. Matveeva, S. V. Sokornova, L. A. Lutova, “Influence of Agrobacterium oncogenes on secondary metabolism of plants”, Phytochemistry Reviews, 14 (2015), 541–554 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11101-015-9409-1'>10.1007/s11101-015-9409-1</ext-link>
[11] M. Faiss, M. Strnad, P. Redig, K. Dolezal, J. Hanus, H. Van Onckelen, T. Schmulling, “Chemically induced expression of the rolC-encoded-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta”, The Plant Journal, 10:1 (1996), 33–46 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/J.1365-313X.1996.10010033.X'>10.1046/J.1365-313X.1996.10010033.X</ext-link>
[12] M. A. Alcalde, M. Muller, S. Munne-Bosch, M. Landin, P. P. Gallego, M. Bonfill, J. Palazon, D. Hidalgo-Martinez, “Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots”, Frontiers in Plant Science, 13 (2022), 1001023 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fpls.2022.1001023'>10.3389/fpls.2022.1001023</ext-link>
[13] G. V. Khafizova, T. V. Matveeva, “Gen rolC agrobakterii: na puti k ponimaniyu funktsii”, Biotekhnologiya i selektsiya rastenii, 4:1 (2021), 36–46 <ext-link ext-link-type='doi' href='https://doi.org/10.30901/2658-6266-2021-1-o4'>10.30901/2658-6266-2021-1-o4</ext-link>
[14] R. Yokoyama, T. Hirose, N. Fujii, E. T. Aspuria, A. Kato, H. Uchimiya, “The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants”, Molecular & General Genetics: MGG, 244:1 (1994), 15–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00280182'>10.1007/BF00280182</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1296618'>1296618</ext-link>
[15] RCSB Protein Data Bank (RCSB PDB), (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://www.rcsb.org/'>https://www.rcsb.org/</ext-link>
[16] AlphaFold Protein Structure Database, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://www.alphafold.com/'>https://www.alphafold.com/</ext-link>
[17] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko et al, “Highly accurate protein structure prediction with AlphaFold”, Nature, 596:7873 (2021), 583–589 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-021-03819-2'>10.1038/s41586-021-03819-2</ext-link>
[18] S. K. Burley, C. Bhikadiya, C. Bi, S. Bittrich, H. Chao, L. Chen, P. A. Craig, G. V. Crichlow, K. Dalenberg, J. M. Duarte et al, “RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning”, Nucleic Acids Research, 51:1 (2023), 488–508 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkac1077'>10.1093/nar/gkac1077</ext-link>
[19] J. Yang, Y. Zhang, “Protein Structure and Function Prediction Using I-TASSER”, Curr. Protoc. Bioinformatics, 2015 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/0471250953.bi0508s52'>10.1002/0471250953.bi0508s52</ext-link>
[20] J. Yang, Y. Zhang, “I-TASSER server: new development for protein structure and function predictions”, Nucleic Acids Research, 43 (2015), 174–181 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkv342'>10.1093/nar/gkv342</ext-link>
[21] NCBI Entrez, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://www.ncbi.nlm.nih.gov/'>https://www.ncbi.nlm.nih.gov/</ext-link>
[22] NCBI BLAST, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://blast.ncbi.nlm.nih.gov/Blast.cgi'>https://blast.ncbi.nlm.nih.gov/Blast.cgi</ext-link>
[23] EMBL-EBI Clustal Omega, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://www.ebi.ac.uk/jdispatcher/msa/clustalo'>https://www.ebi.ac.uk/jdispatcher/msa/clustalo</ext-link>
[24] A. M. Waterhouse, J. B. Procter, D. M.A. Martin, M. Clamp, G. J. Barton, “Jalview Version 2-a multiple sequence alignment editor and analysis workbench”, Bioinformatics, 25:9 (2009), 1189–1191 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btp033'>10.1093/bioinformatics/btp033</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2600480'>2600480</ext-link>
[25] I-TASSER, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://zhanggroup.org/I-TASSER/'>https://zhanggroup.org/I-TASSER/</ext-link>
[26] TM-score Server, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='https://zhanggroup.org/TM-score/'>https://zhanggroup.org/TM-score/</ext-link>
[27] TAIR, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='http://v2.arabidopsis.org'>v2.arabidopsis.org</ext-link>
[28] STRING, (accessed 18.09.2024) <ext-link ext-link-type='uri' href='http://string-db.org'>string-db.org</ext-link>
[29] K. Chen, F. Dorlhac de Borne, E. Szegedi, L. Otten, “Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana”, The Plant Journal: For Cell and Molecular Biology, 80:4 (2014), 669–682 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/tpj.12661'>10.1111/tpj.12661</ext-link>
[30] T. V. Matveeva, S. V. Sokornova, “Biologicheskie osobennosti prirodno transgennykh rastenii i ikh rol v evolyutsii”, Fiziologiya rastenii, 64:5 (2017), 323–336 <ext-link ext-link-type='doi' href='https://doi.org/10.7868/S0015330317050086'>10.7868/S0015330317050086</ext-link>
[31] Y. Xu, Z. Liu, L. Cai, D. Xu, “Protein structure prediction by protein threading”, Computational Methods for Protein Structure Prediction and Modeling, 2010, 1–42 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-0-387-68825-1_1'>10.1007/978-0-387-68825-1_1</ext-link>
[32] W. Zheng, Q. Wuyun, X. Zhou, Y. Li, P. L. Freddolino, Y. Zhang, “LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation”, Nucleic Acids Research, 50 (2022), 454–464 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkac248'>10.1093/nar/gkac248</ext-link>
[33] M. Wang, T. Soyano, S. Machida, J. Y. Yang, C. Jung, N. H. Chua, Y. A. Yuan, “Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b”, Genes & Development, 25:1 (2011), 64–76 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1985511'>10.1101/gad.1985511</ext-link>
[34] Y. Zhang, J. Skolnick, “TM-align: a protein structure alignment algorithm based on the TM-score”, Nucleic Acids Research, 33:7 (2005), 2302–2309 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gki524'>10.1093/nar/gki524</ext-link>
[35] Q. Deng, J. T. Barbieri, “Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins”, Annual Review of Microbiology, 62 (2008), 271–288 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.micro.62.081307.162848'>10.1146/annurev.micro.62.081307.162848</ext-link>
[36] W. Qiu, R. Lam, O. Voytyuk, V. Romanov, R. Gordon, S. Gebremeskel, J. Vodsedalek, C. Thompson, I. Beletskaya, K. P. Battaile et al, “Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2”, Acta Crystallographica. Section D, Biological Crystallography, 70:10 (2014), 2740–2753 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1399004714017660'>10.1107/S1399004714017660</ext-link>
[37] C. Zhang, P. L. Freddolino, Y. Zhang, “COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information”, Nucleic Acids Research, 45:1 (2017), 291–299
[38] J. Yang, A. Roy, Y. Zhang, “Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment”, Bioinformatics (Oxford, England), 29:20 (2013), 2588–2595
[39] C. Zhang, X. Zhang, P. L. Freddolino, Y. Zhang, “BioLiP2: an updated structure database for biologically relevant ligand-protein interactions”, Nucleic Acids Research, 52:1 (2024), 404–412 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkad630'>10.1093/nar/gkad630</ext-link>
[40] H. Zhang, Z. Gu, Q. Wu, L. Yang, C. Liu, H. Ma, Y. Xia, X. Ge, “Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl)ation”, Scientific Reports, 5 (2015), 15892 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep15892'>10.1038/srep15892</ext-link>
[41] L. Aravind, D. Zhang, R. F. de Souza, S. Anand, L. M. Iyer, “The natural history of ADP ribosyltransferases and the ADP-ribosylation system”, Current Topics in Microbiology and Immunology, 384 (2015), 3–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/82_2014_414'>10.1007/82_2014_414</ext-link>
[42] J. G.M. Rack, L. Palazzo, I. Ahel, “(ADP-ribosyl)hydrolases: structure, function, and biology”, Genes & Development, 34 (2020), 263–284 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.334631.119'>10.1101/gad.334631.119</ext-link>
[43] A. Huber, P. Bai, J. M. de Murcia, G. de Murcia, “PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development”, DNA Repair, 3:8-9 (2004), 1103–1108 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.dnarep.2004.06.002'>10.1016/j.dnarep.2004.06.002</ext-link>
[44] B. A. Gibson, W. L. Kraus, “New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs”, Nature Reviews. Molecular Cell Biology, 13:7 (2012), 411–424 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm3376'>10.1038/nrm3376</ext-link>
[45] T. Kalisch, J. C. Ame, F. Dantzer, V. Schreiber, “New readers and interpretations of poly(ADP-ribosyl)ation”, Trends in Biochemical Sciences, 37:9 (2012), 381–390 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tibs.2012.06.001'>10.1016/j.tibs.2012.06.001</ext-link>
[46] A. Leung, T. Todorova, Y. Ando, P. Chang, “Poly(ADP-ribose) regulates post transcriptional gene regulation in the cytoplasm”, RNA Biology, 9:5 (2012), 542–548 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/rna.19899'>10.4161/rna.19899</ext-link>
[47] Y. Amor, E. Babiychuk, D. Inze, Levine, A., “The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants”, FEBS Letters, 440:1-2 (1998), 1–7 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0014-5793(98)01408-2'>10.1016/s0014-5793(98)01408-2</ext-link>
[48] M. De Block, C. Verduyn, D. De Brouwer, M. Cornelissen, “Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance”, The Plant Journal: For Cell and Molecular Biology, 41 (2005), 95–106 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-313X.2004.02277.x'>10.1111/j.1365-313X.2004.02277.x</ext-link>
[49] Tian R.H, G. Y. Zhang, C. H. Yan, Y. R. Dai, “Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells”, FEBS Letters, 474:1 (2000), 11–15 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0014-5793(00)01561-1'>10.1016/s0014-5793(00)01561-1</ext-link>
[50] G. M. Frost, K. S. Yang, G. R. Waller, “Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L”, The Journal of Biological Chemistry, 242:5 (1967), 887–888 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0021-9258(18)96207-1'>10.1016/S0021-9258(18)96207-1</ext-link>
[51] G. Amini, S. Sokornova, H. Mohajjel-Shoja, A. N. Stavrianidi, I. Rodin, T. V. Matveeva, “Induced expression of rolC for study of its effect on the expression of genes associated with nicotine synthesis in tobacco”, Ecological Genetics, 18:4 (2020), 413–422 <ext-link ext-link-type='doi' href='https://doi.org/10.17816/ecogen33768'>10.17816/ecogen33768</ext-link>
[52] J. Palazon, R. M. Cusido, C. Roig, M. T. Pinol, “Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants”, Plant Cell Reports, 17:5 (1998), 384–390 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s002990050411'>10.1007/s002990050411</ext-link>
[53] A. Helfer, B. Clement, P. Michler, L. Otten, “The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco”, Plant Molecular Biology, 52:2 (2003), 483–493 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/a:1023962121894'>10.1023/a:1023962121894</ext-link>
[54] L. Gremillon, A. Helfer, B. Clement, L. Otten, “New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter”, The Plant Journal: For Cell and Molecular Biology, 37:2 (2004), 218–228 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-313x.2003.01956.x'>10.1046/j.1365-313x.2003.01956.x</ext-link>
[55] S. Kitakura, S. Terakura, Y. Yoshioka, C. Machida, Y. Machida, “Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus”, Journal of Plant Research, 121:4 (2008), 425–433 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10265-008-0160-1'>10.1007/s10265-008-0160-1</ext-link>
[56] S. Terakura, Y. Ueno, H. Tagami, S. Kitakura, C. Machida, H. Wabiko, H. Aiba, L. Otten, H. Tsukagoshi, K. Nakamura et al, “An oncoprotein from the plant pathogen agrobacterium has histone chaperone-like activity”, The Plant Cell, 19:9 (2007), 2855–2865 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.106.049551'>10.1105/tpc.106.049551</ext-link>
[57] S. Terakura, S. Kitakura, M. Ishikawa, Y. Ueno, T. Fujita, C. Machida, H. Wabiko, Y. Machida, “Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles”, Plant and Cell Physiology, 47:5 (2006), 664–672 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/pcp/pcj036'>10.1093/pcp/pcj036</ext-link>
[58] R. Zhong, C. Lee, J. Zhou, R. L. McCarthy, Z. H. Ye, “A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis”, The Plant Cell, 20:10 (2008), 2763–2782 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.108.061325'>10.1105/tpc.108.061325</ext-link>
[59] U. Avci, H. Earl Petzold, I. O. Ismail, E. P. Beers, C. H. Haigler, “Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots”, The Plant Journal: For Cell and Molecular Biology, 56:2 (2008), 303–315 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-313X.2008.03592.x'>10.1111/j.1365-313X.2008.03592.x</ext-link>