Competitive exclusion principle and Droop's model
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 486-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

The situations of fulfillment or violation of the principle of competitive exclusion are investigated. The principle of competitive exclusion is a well-known principle of G.F. Gause. The principle means that each species has its own ecological niche, and no two different species can occupy the same ecological niche. In general, the principle of competitive exclusion states that long-term coexistence of species is impossible if their number exceeds the number of density-dependent factors controlling growth. However, the principle of competitive exclusion is not a repeatedly confirmed law of the physical type; it is only a principle-hypothesis. The fact of its violation is not something outstanding, since numerous examples of such violations are now known. But each such case draws attention to the possible causes of such violations. After all, compliance with the principle of competitive exclusion creates clear characteristics of ecological niches, their similarities or differences. And violation, on the contrary, blurs these differences. We will trace the correspondence of this principle to microbial communities in phytoplankton. The study is of a model nature, conducted on the well-known Droop model. Modeling the vital activity of microorganisms occupies a significant place in the study of biological processes in cultivated conditions. The corresponding dependencies and equations are also applied to natural systems. The model is represented by a system of nonlinear differential equations, in which the properties of the solutions are investigated. This model is also applied to the analysis of phytoplankton in water bodies using laboratory methods of experimental determination of parameters. Equilibrated stationary solutions, called equilibria, are considered. The existence and stability of such solutions are investigated. It turns out that these solutions characterize the phase portrait of the system of differential equations in sufficient detail. Computational experiments in examples illustrate the properties of the solutions.
@article{MBB_2024_19_a19,
     author = {A. I. Abakumov and I. S. Kozitskaya},
     title = {Competitive exclusion principle and {Droop's} model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {486--496},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a19/}
}
TY  - JOUR
AU  - A. I. Abakumov
AU  - I. S. Kozitskaya
TI  - Competitive exclusion principle and Droop's model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 486
EP  - 496
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a19/
LA  - ru
ID  - MBB_2024_19_a19
ER  - 
%0 Journal Article
%A A. I. Abakumov
%A I. S. Kozitskaya
%T Competitive exclusion principle and Droop's model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 486-496
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a19/
%G ru
%F MBB_2024_19_a19
A. I. Abakumov; I. S. Kozitskaya. Competitive exclusion principle and Droop's model. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 486-496. http://geodesic.mathdoc.fr/item/MBB_2024_19_a19/

[1] G. F. Gause, The struggle for existence, The Williams & Wilkins Company, Baltimore, 1934, 163 pp.

[2] A. Degermendzhi, “Coexistence of microbal populations and autostabilization of regularing factors in continuous culture: theory and experiments”, Aquatic Ecology, 44 (2010), 541–560 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10452-010-9325-9'>10.1007/s10452-010-9325-9</ext-link>

[3] N. S. Abrosov, A. G. Bogolyubov, Ekologicheskie i geneticheskie zakonomernosti sosuschestvovaniya i koevolyutsii vidov, Nauka. Sibirskoe otdelenie, Novosibirsk, 1988, 327 pp.

[4] G. E. Hutchinson, “The Paradox of the Plankton”, The American Naturalist, 95:882 (1961), 137–145 <ext-link ext-link-type='doi' href='https://doi.org/1086/282171'>1086/282171</ext-link>

[5] V. A. Adamovich, I. A. Terskov, A. G. Degermendzhi, “Effekt autostabilizatsii kontroliruyuschikh rost faktorov i vzaimodeistviya v soobschestve”, DAN, 295:5 (1987), 1236–1239

[6] M. R. Droop, “Some thoughts on nutrient limitation in algae”, Journal of Phycology, 1973, no. 9, 264–272 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1529-8817.1973.tb04092.x'>10.1111/j.1529-8817.1973.tb04092.x</ext-link>

[7] J. Monod, “The growth of bacterial cultures”, Annual Review of Microbiology, 111:2 (1949), 371–394 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.mi.03.100149.002103'>10.1146/annurev.mi.03.100149.002103</ext-link>

[8] M. R. Droop, “The nutrient status of algal cells in continuous culture”, Journal of the Marine Biological Association of the United Kingdom, 54 (1974), 825–855 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S002531540005760X'>10.1017/S002531540005760X</ext-link>

[9] V. A. Silkin, K. M. Khailov, Bioekologicheskie mekhanizmy upravleniya v akvakulture, Nauka, L., 1988, 230 pp.

[10] V. V. Adamovich, D. Yu. Rogozin, A. G. Degermendzhi, “Poisk kriteriya regulirovaniya v nepreryvnoi kulture mikroorganizmov”, Mikrobiologiya, 74:1 (2005), 5–16

[11] Jordensen S.E., Lake management, Oxford etc.

[12] D. Tilman, “Resource competition between planktonic algae: an experimental and theoretical approach”, Ecology, 58 (1977), 338–348 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1935608'>10.2307/1935608</ext-link>

[13] V. A. Silkin, A. I. Abakumov, L. A. Pautova, A. S. Mikaelyan, V. K. Chasovnikov, T. A. Lukashova, “Co-existence of non-native and the Black sea phytoplankton species. Invasion hypotheses discussion”, Russian Journal of Biological Invasions, 2:4 (2011), 256–264 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S2075111711040102'>10.1134/S2075111711040102</ext-link>

[14] Justus von Liebig, Ueber das Studium der Naturwissenschaften und uber den Zustand der Chemie in Preußen, Vieweg, Braunschweig, 1840

[15] N. F. Riznichenko, A. B. Rubin, Matematicheskie modeli biologicheskikh produktsionnykh protsessov, Izd-vo MGU, M., 1993, 300 pp.

[16] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei populyatsii”, Problemy kibernetiki, 25, Nauka, M., 1972, 100–106

[17] R. McGehee, R. A. Armstrong, “Some Mathematical Problems Concerning the Ecological Principle of Competitive Exclusion”, Journal of Differential Equations, 23 (1977), 30–52 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-0396(77)90135-8'>10.1016/0022-0396(77)90135-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0353.92007'>0353.92007</ext-link>

[18] A. G. Degermendzhi, N. S. Pechurkin, A. N. Shkidchenko, Autostabilizatsiya faktorov, kontroliruyuschikh rost v biologicheskikh sistemakh, Nauka, Novosibirsk, 1979, 139 pp.

[19] A. G. Degermendzhi, “On the problem of coexistence of interacting continuous populations”, Mixed continuous cultures of microorganisms, ed. Pechurkin N., Nauka, Novosibirsk, 1981, 26–106 (in Russian)

[20] T. Munkenmuller, H. Bugmann, K. Johst, “Hutchinson revisited: Patterns of density regulation and coexistence of strong competitors”, J. Theor. Biol, 259:1 (2009), 109–117 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2009.03.010'>10.1016/j.jtbi.2009.03.010</ext-link>