Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 472-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical modeling of the nature of the motion and distribution of the Holstein polaron in a homogeneous polynucleotide chain in a constant electric field and under the simultaneous influence of constant and alternating electric fields was carried out. The conducted researches showed significant differences in the velocity and nature of the polaron movement in the chain when exposed only to a constant electric field and when exposed simultaneously to constant and alternating electric fields. Particularly large differences are observed in chains with parameters close to the parameters of DNA chains. Modeling the motion of a polaron under the simultaneous influence of constant and alternating electric fields showed that it is possible for a charge to move over very large distances. In this case, the nature of the polaron’s motion is very different from the nature of the polaron’s motion in a constant electric field. And even in the polyG/polyC DNA chain, the polaron moves along the chain over a sufficiently large distance. It is shown that for a certain set of parameters, the motion of a polaron in a chain under the simultaneous influence of constant and alternating electric fields can look like a motion with an average constant velocity.
@article{MBB_2024_19_a18,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {Dynamics of the {Holstein} polaron under constant and combined action of constant and alternating electric fields},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {472--485},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 472
EP  - 485
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/
LA  - ru
ID  - MBB_2024_19_a18
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 472-485
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/
%G ru
%F MBB_2024_19_a18
A. N. Korshounova; V. D. Lakhno. Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 472-485. http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/

[1] Chakraborty Tapash (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, NanoScience and Technology, XVIII, Springer, Berlin–Heidelberg–New York, 2007, 288 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-540-72494-0'>10.1007/978-3-540-72494-0</ext-link>

[2] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>

[3] Schuster G.B. (ed.), Long-range charge transfer in DNA II, Springer, 2004 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b14032'>10.1007/b14032</ext-link>

[4] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Mathematical Biology and Bioinformatics, 14:2 (2019), 406–419 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.406'>10.17537/2019.14.406</ext-link>

[5] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.65.061905'>10.1103/PhysRevE.65.061905</ext-link>

[6] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2006.01.005'>10.1016/j.physe.2006.01.005</ext-link>

[7] T. Dauxois, M. Peyrard, A. R. Bishop, “Dynamics and thermodynamics of a nonlinear model for DNAdenaturation”, Phys. Rev. E, 47 (1993), 684 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.47.684'>10.1103/PhysRevE.47.684</ext-link>

[8] J. H. Ojeda, R. P.A. Lima, F. Domnguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, Journal of Physics: Condensed Matter, 21 (2009), 285105 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/21/28/285105'>10.1088/0953-8984/21/28/285105</ext-link>

[9] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0951-7715/21/6/T02'>10.1088/0951-7715/21/6/T02</ext-link>

[10] E. B. Starikov, “Electronphonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/14786430500157110'>10.1080/14786430500157110</ext-link>

[11] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>

[12] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 <ext-link ext-link-type='doi' href='https://doi.org/doi.org/10.1007/b94477'>doi.org/10.1007/b94477</ext-link>

[13] E. Daz, R. P.A. Lima, F. Domnguez-Adame, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.78.134303'>10.1103/PhysRevB.78.134303</ext-link>

[14] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.100.052203'>10.1103/PhysRevE.100.052203</ext-link>

[15] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>

[16] A. L.S. Pereira, M. L. Lyra, F. A.B. F. de Moura, A. Ranciaro Neto, W. S. Dias, “Nonlinear wave-packet dynamics resonantly driven by AC and DC fields”, Commun. Nonlinear Sci. Numer Simulat., 64 (2018), 89–97 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2018.04.016'>10.1016/j.cnsns.2018.04.016</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1510.78016'>1510.78016</ext-link>

[17] D. Morais, P. E. de Brito, H. N. Nazareno, W. S. Dias, “The superposed electric field effect on the charge transport and polaron formation in molecular crystals”, J. Phys.: Condens. Matter, 34 (2022), 455302 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1361-648X/ac8b4c'>10.1088/1361-648X/ac8b4c</ext-link>

[18] Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao, “Transient Dynamics of Super Bloch Oscillations of a 1D Holstein Polaron under the Influence of an External AC Electric Field”, Annalen der Physik, 531 (2019), 1800303 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201800303'>10.1002/andp.201800303</ext-link>

[19] C. Herrero-Gmez, E. Daz, F. Domnguez-Adame, “Super Bloch oscillations in the Peyrard-Bishop-Holstein model”, Physics Letters A, 376 (2012), 555–558 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physleta.2011.10.053'>10.1016/j.physleta.2011.10.053</ext-link>

[20] K. Kudo, T. S. Monteiro, “Theoretical analysis of super-Bloch oscillations”, Phys.Rev.A, 83 (2011), 053627 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevA.83.053627'>10.1103/PhysRevA.83.053627</ext-link>

[21] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Euro. Phys. J. B., 55 (2007), 85–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>

[22] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B., 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>

[23] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric feld”, Chaos, Solitons and Fractals, 182 (2024), 114786 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2024.114786'>10.1016/j.chaos.2024.114786</ext-link>

[24] Korshunova A.N., Lakhno V.D., “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 8:9 (2018), 1312-1319 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2018.09.46414.14-18'>10.21883/JTF.2018.09.46414.14-18</ext-link>

[25] Korshunova A.N., Lakhno V.D., “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 452-464 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.452'>10.17537/2022.17.452</ext-link>

[26] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[27] T. Holstein, “Studies of polaron motion: Part II. The small polaron”, Annals of Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[28] A. N. Korshunova, V. D. Lakhno, “Anew type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>

[29] A. N. Korshunova, V. D. Lakhno, “Dependence of the nature of the Holstein polaron motion in a polynucleotide chain subjected to a constant electric field on the initial polaron state and the parameters of the chain”, Journal of Physics: Conference Series, 2155 (2022), 012031 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/2155/1/012031'>10.1088/1742-6596/2155/1/012031</ext-link>

[30] Korshunova A.N., Lakhno V.D., “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 446-463 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.446'>10.17537/2023.18.446</ext-link>