Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a18, author = {A. N. Korshounova and V. D. Lakhno}, title = {Dynamics of the {Holstein} polaron under constant and combined action of constant and alternating electric fields}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {472--485}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/} }
TY - JOUR AU - A. N. Korshounova AU - V. D. Lakhno TI - Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 472 EP - 485 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/ LA - ru ID - MBB_2024_19_a18 ER -
%0 Journal Article %A A. N. Korshounova %A V. D. Lakhno %T Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 472-485 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/ %G ru %F MBB_2024_19_a18
A. N. Korshounova; V. D. Lakhno. Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 472-485. http://geodesic.mathdoc.fr/item/MBB_2024_19_a18/
[1] Chakraborty Tapash (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, NanoScience and Technology, XVIII, Springer, Berlin–Heidelberg–New York, 2007, 288 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-540-72494-0'>10.1007/978-3-540-72494-0</ext-link>
[2] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>
[3] Schuster G.B. (ed.), Long-range charge transfer in DNA II, Springer, 2004 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b14032'>10.1007/b14032</ext-link>
[4] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Mathematical Biology and Bioinformatics, 14:2 (2019), 406–419 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.406'>10.17537/2019.14.406</ext-link>
[5] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.65.061905'>10.1103/PhysRevE.65.061905</ext-link>
[6] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2006.01.005'>10.1016/j.physe.2006.01.005</ext-link>
[7] T. Dauxois, M. Peyrard, A. R. Bishop, “Dynamics and thermodynamics of a nonlinear model for DNAdenaturation”, Phys. Rev. E, 47 (1993), 684 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.47.684'>10.1103/PhysRevE.47.684</ext-link>
[8] J. H. Ojeda, R. P.A. Lima, F. Domnguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, Journal of Physics: Condensed Matter, 21 (2009), 285105 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/21/28/285105'>10.1088/0953-8984/21/28/285105</ext-link>
[9] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0951-7715/21/6/T02'>10.1088/0951-7715/21/6/T02</ext-link>
[10] E. B. Starikov, “Electronphonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/14786430500157110'>10.1080/14786430500157110</ext-link>
[11] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>
[12] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 <ext-link ext-link-type='doi' href='https://doi.org/doi.org/10.1007/b94477'>doi.org/10.1007/b94477</ext-link>
[13] E. Daz, R. P.A. Lima, F. Domnguez-Adame, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.78.134303'>10.1103/PhysRevB.78.134303</ext-link>
[14] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.100.052203'>10.1103/PhysRevE.100.052203</ext-link>
[15] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>
[16] A. L.S. Pereira, M. L. Lyra, F. A.B. F. de Moura, A. Ranciaro Neto, W. S. Dias, “Nonlinear wave-packet dynamics resonantly driven by AC and DC fields”, Commun. Nonlinear Sci. Numer Simulat., 64 (2018), 89–97 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2018.04.016'>10.1016/j.cnsns.2018.04.016</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1510.78016'>1510.78016</ext-link>
[17] D. Morais, P. E. de Brito, H. N. Nazareno, W. S. Dias, “The superposed electric field effect on the charge transport and polaron formation in molecular crystals”, J. Phys.: Condens. Matter, 34 (2022), 455302 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1361-648X/ac8b4c'>10.1088/1361-648X/ac8b4c</ext-link>
[18] Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao, “Transient Dynamics of Super Bloch Oscillations of a 1D Holstein Polaron under the Influence of an External AC Electric Field”, Annalen der Physik, 531 (2019), 1800303 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201800303'>10.1002/andp.201800303</ext-link>
[19] C. Herrero-Gmez, E. Daz, F. Domnguez-Adame, “Super Bloch oscillations in the Peyrard-Bishop-Holstein model”, Physics Letters A, 376 (2012), 555–558 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physleta.2011.10.053'>10.1016/j.physleta.2011.10.053</ext-link>
[20] K. Kudo, T. S. Monteiro, “Theoretical analysis of super-Bloch oscillations”, Phys.Rev.A, 83 (2011), 053627 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevA.83.053627'>10.1103/PhysRevA.83.053627</ext-link>
[21] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Euro. Phys. J. B., 55 (2007), 85–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>
[22] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B., 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>
[23] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric feld”, Chaos, Solitons and Fractals, 182 (2024), 114786 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2024.114786'>10.1016/j.chaos.2024.114786</ext-link>
[24] Korshunova A.N., Lakhno V.D., “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 8:9 (2018), 1312-1319 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2018.09.46414.14-18'>10.21883/JTF.2018.09.46414.14-18</ext-link>
[25] Korshunova A.N., Lakhno V.D., “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 452-464 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.452'>10.17537/2022.17.452</ext-link>
[26] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>
[27] T. Holstein, “Studies of polaron motion: Part II. The small polaron”, Annals of Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>
[28] A. N. Korshunova, V. D. Lakhno, “Anew type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>
[29] A. N. Korshunova, V. D. Lakhno, “Dependence of the nature of the Holstein polaron motion in a polynucleotide chain subjected to a constant electric field on the initial polaron state and the parameters of the chain”, Journal of Physics: Conference Series, 2155 (2022), 012031 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/2155/1/012031'>10.1088/1742-6596/2155/1/012031</ext-link>
[30] Korshunova A.N., Lakhno V.D., “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 446-463 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.446'>10.17537/2023.18.446</ext-link>