Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a17, author = {N. S. Fialko}, title = {Modeling of charge dynamics in synthetic {DNA} under the influence of an external electric field}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {439--452}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/} }
TY - JOUR AU - N. S. Fialko TI - Modeling of charge dynamics in synthetic DNA under the influence of an external electric field JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 439 EP - 452 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/ LA - ru ID - MBB_2024_19_a17 ER -
N. S. Fialko. Modeling of charge dynamics in synthetic DNA under the influence of an external electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 439-452. http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/
[1] Schuster G.B., Long-Range Charge Transfer in DNA I, Topics in Current Chemistry, 236, Springer, 2004, 219 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b84245'>10.1007/b84245</ext-link>
[2] Hans-Achim W., H. B. Gray (eds.), Charge Transfer in DNA: From Mechanism to Application, John Wiley & Sons, 2006, 245 pp.
[3] Chakraborty T. (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, Springer, Berlin, 2007, 288 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-540-72494-0'>10.1007/978-3-540-72494-0</ext-link>
[4] J. C. Genereux, J. K. Barton, “Mechanisms for DNA Charge Transport”, Chem. Rev, 110:3 (2010), 1642–1662 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/cr900228f'>10.1021/cr900228f</ext-link>
[5] Schuster G.B. (ed.), Long-Range Charge Transfer in DNA II, Topics in Current Chemistry, 237, Springer, 2004, 245 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b14032'>10.1007/b14032</ext-link>
[6] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>
[7] Offenhausser A., R. Rinaldi (eds.), Nanobioelectronics for Electronics, Biology, and Medicine, Springer, New York, 2009, 337 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-0-387-09459-5'>10.1007/978-0-387-09459-5</ext-link>
[8] M. Ratner, “A brief history of molecular electronics”, Nature Nanotechnology, 8:6 (2013), 378–381 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nnano.2013.110'>10.1038/nnano.2013.110</ext-link>
[9] Jastrzebska-Perfect P., Spyropoulos G.D., Cea C., Zhao Z., Rauhala O.J., Viswanathan A., Sheth S.A., Gelinas J.N., Khodagholy D., “Mixed-conducting particulate composites for soft electronics”, Sci. Adv., 6:17 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1126/sciadv.aaz6767'>10.1126/sciadv.aaz6767</ext-link>
[10] V. D. Lakhno, A. V. Vinnikov, “Molekulyarnye ustroistva na osnove DNK”, Mat. biol. i bioinf, 16:1 (2021), 115–135 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2021.16.115'>10.17537/2021.16.115</ext-link>
[11] F. D. Lewis, R. M. Young, M. R. Wasielewski, “Tracking photoinduced charge separation in DNA: from start to finish”, Acc. Chem. Res, 51:8 (2018), 1746–1754 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.accounts.8b00090'>10.1021/acs.accounts.8b00090</ext-link>
[12] E. C.M. Tse, T. J. Zwang, S. Bedoya, J. K. Barton, “Effective distances for DNA-mediated charge transport between repair proteins”, ACS Central Sci, 5:1 (2019), 65–72 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acscentsci.8b00566'>10.1021/acscentsci.8b00566</ext-link>
[13] P. J. Kolbeck, M. Tisma, B. T. Analikwu, W. Vanderlinden, C. Dekker, J. Lipfert, “Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments”, Nucleic acids research, 52:1 (2024), 59–72 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkad1055'>10.1093/nar/gkad1055</ext-link>
[14] Starikov E. B., S. Tanaka, J. P. Lewis (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier Scientific, Amsterdam, 2006, 461 pp.
[15] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0951 7715/21/6/T02'>10.1088/0951 7715/21/6/T02</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2422372'>2422372</ext-link>
[16] J. H. Ojeda, R. P.A. Lima, F. Dominguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, J. Phys.: Condens Matter, 21 (2009), 285105 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/21/28/285105'>10.1088/0953-8984/21/28/285105</ext-link>
[17] V. D. Lakhno, “Davydov's solitons in homogeneous nucleotide chain”, International Journal of Quantum Chemistry, 110 (2010), 127–137 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.22264'>10.1002/qua.22264</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=913530'>913530</ext-link>
[18] T. Yu. Astakhova, V. A. Kashin, V. N. Likhachev, G. A. Vinogradov, “Polaron dynamics on the nonlinear lattice in the Su-Schrieffer-Heeger approximation. Exact and approximate solutions”, Acta Physica Polonica A, 129:3 (2016), 334–339 <ext-link ext-link-type='doi' href='https://doi.org/10.12693/APhysPolA.129.334'>10.12693/APhysPolA.129.334</ext-link>
[19] D. Rawtani, B. Kuntmal, Y. Agrawal, “Charge transfer in DNA and its diverse modelling approaches”, Frontiers in Life Science, 9:3 (2016), 214–225 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/21553769.2016.1207570'>10.1080/21553769.2016.1207570</ext-link>
[20] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Physics, 8:3 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>
[21] T. Holstein, “Studies of polaron motion: Part II. The “small” polaron”, Annals of Physics, 8:3 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>
[22] E. M. Conwell, “Charge transport in DNA in solution: The role of polarons”, PNAS, 102:25 (2005), 8795–9 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0501406102'>10.1073/pnas.0501406102</ext-link>
[23] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>
[24] J. A. Berashevich, A. D. Bookatz, T. Chakraborty, “The electric field effect and conduction in the Peyrard-Bishop-Holstein model”, J. Phys.: Condens. Matter, 20 (2008), 035207 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/20/03/035207'>10.1088/0953-8984/20/03/035207</ext-link>
[25] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>
[26] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>
[27] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>
[28] A. N. Korshunova, V. D. Lakhno, “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 88:9 (2018), 1312–1319 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2018.09.46414.14-18'>10.21883/JTF.2018.09.46414.14-18</ext-link>
[29] A. N. Korshunova, V. D. Lakhno, “Dva tipa ostsillyatsii kholsteinovskogo polyarona, ravnomerno dvizhuschegosya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 14:2 (2019), 477–487 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.477'>10.17537/2019.14.477</ext-link>
[30] A. N. Korshunova, V. D. Lakhno, “Polyaronnyi perenos zaryada v odnorodnoi Poly G/Poly C-tsepochke v modeli Peirarda-Bishopa-Kholsteina v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 90:9 (2020), 1528–1536 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2020.09.49686.397-19'>10.21883/JTF.2020.09.49686.397-19</ext-link>
[31] A. N. Korshunova, V. D. Lakhno, “Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements”, Math. Biol. Bioinf, 16:2 (2021), 411–421 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2021.16.411'>10.17537/2021.16.411</ext-link>
[32] A. N. Korshunova, V. D. Lakhno, “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 17:2 (2022), 452–464 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.452'>10.17537/2022.17.452</ext-link>
[33] A. N. Korshunova, V. D. Lakhno, “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Mat. biol. i bioinf, 18:2 (2023), 446–463 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.446'>10.17537/2023.18.446</ext-link>
[34] E. Diaz, R. P.A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.78.134303'>10.1103/PhysRevB.78.134303</ext-link>
[35] H. Zhongkai, H. Masayuki, I. Hajime, Z. Yang, “Transient dynamics of super Bloch oscillations of a 1D Holstein polaron under the influence of an external AC electric field”, Ann. Phys, 531 (2019), 1800303 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201800303'>10.1002/andp.201800303</ext-link>
[36] F. Bloch, “Quantum mechanics of electrons in crystal lattices [Uber die Quantenmechanik der Elektronen in Kristallgittern]”, Z. Phys, 52 (1928), 555–600 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01339455'>10.1007/BF01339455</ext-link>
[37] A. M. Bouchard, M. Luban, “Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices”, Phys. Rev. B, 52:7 (1995), 5105 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.52.5105'>10.1103/PhysRevB.52.5105</ext-link>
[38] V. D. Lakhno, N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain”, Jetp Lett, 79 (2004), 464–467 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1780553'>10.1134/1.1780553</ext-link>
[39] C. A.M. Seidel, A. Schulz, M. H.M. Sauer, “Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies”, J. Phys. Chem, 100:13 (1996), 5541–5553 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp951507c'>10.1021/jp951507c</ext-link>
[40] F. D. Lewis, Y. Wu, “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, J. Photochem. Photobiol, 2:1 (2001), 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1389-5567(01)00008-9'>10.1016/S1389-5567(01)00008-9</ext-link>
[41] A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp001109w'>10.1021/jp001109w</ext-link>
[42] J. Jortner, M. Bixon, A. Voityuk, N. Rosch, “Superexchange Mediated Charge Hopping in DNA”, J. Phys. Chem. A, 106:33 (2002), 7599–7606 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp014232b'>10.1021/jp014232b</ext-link>
[43] N. S. Fialko, E. V. Sobolev, V. D. Lakhno, “On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides”, JETP, 124:4 (2017), 635 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063776117040124'>10.1134/S1063776117040124</ext-link>
[44] E. Starikov, “Electron-phonon coupling in DNA: A systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/14786430500157110'>10.1080/14786430500157110</ext-link>
[45] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric field”, Chaos, Solitons and Fractals, 182 (2024), 114786 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2024.114786'>10.1016/j.chaos.2024.114786</ext-link>
[46] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72:2 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>
[47] H. S. Greenside, E. Helfand, “Numerical integration of stochastic differential equations-II”, Bell System Technical Journal, 60 (1981), 1927–1940 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/j.1538 7305.1981.tb00303.x'>10.1002/j.1538 7305.1981.tb00303.x</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0464.65101'>0464.65101</ext-link>
[48] N. S. Fialko, “Smeshannyi algoritm rascheta dinamiki perenosa zaryada v DNK na bolshikh vremennykh intervalakh”, Kompyuternye issledovaniya i modelirovanie, 2:1 (2010), 63–72 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2010-2-1-63-72'>10.20537/2076-7633-2010-2-1-63-72</ext-link>
[49] V. D. Lakhno, N. S. Fialko, “Podvizhnost dyrok v odnorodnoi nukleotidnoi tsepochke”, Pisma v ZhETF, 78:5 (2003), 786–788 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1625737'>10.1134/1.1625737</ext-link>
[50] I. G. Lang, Yu. A. Firsov, “Kinetic Theory of Semiconductors with Low Mobility”, JETP, 16:5 (1963), 1301
[51] N. S. Fialko, M. M. Olshevets, V. D. Lakhno, “Chislennoe issledovanie modeli Kholsteina v raznykh termostatakh”, Kompyuternye issledovaniya i modelirovanie, 16:2 (2024), 489–502 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2024-16-2-489-502'>10.20537/2076-7633-2024-16-2-489-502</ext-link>