Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 439-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the Holstein polaron model, the problem of modeling Bloch oscillations of a quantum charged particle in a chain of classical sites placed in a uniform electric field is considered. As is known, in a rigid lattice, Bloch oscillations describe charge oscillations under the influence of a constant electric field. Biopolymers are considered as non-rigid lattice, and movement of lattice sites have significant effect on the charge dynamics. Most of the computational experiments were carried out with the parameters values of homogeneous polyguanine fragments of DNA. At the initial moment, the charge “arises” at one site of the chain placed in a field with constant intensity, so charge have no time to form a polaron. The dynamics of charge in an unperturbed chain (at zero temperature) is simulated. Minimum chain length is estimated, for which end effects have not influence on the charge dynamics during Bloch oscillations. For the center of mass motion of the charge, a comparative analysis was carried out with the dynamics of the polaron, previously studied by Korshunova and Lakhno. A simulation of Bloch charge oscillations at a finite temperature was performed. To determine the frequency of charge oscillations, in addition to visual control, a Fourier series expansion was used. It is shown that averaging over realizations leads to smoothing of oscillations, which complicates the study of the influence of temperature on Bloch oscillations. Based on the simulation results, we assume that it is necessary to study the dynamics of individual implementations in more detail, in order to determine the temperature at which Bloch oscillations are disrupted.
@article{MBB_2024_19_a17,
     author = {N. S. Fialko},
     title = {Modeling of charge dynamics in synthetic {DNA} under the influence of an external electric field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {439--452},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/}
}
TY  - JOUR
AU  - N. S. Fialko
TI  - Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 439
EP  - 452
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/
LA  - ru
ID  - MBB_2024_19_a17
ER  - 
%0 Journal Article
%A N. S. Fialko
%T Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 439-452
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/
%G ru
%F MBB_2024_19_a17
N. S. Fialko. Modeling of charge dynamics in synthetic DNA under the influence of an external electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 439-452. http://geodesic.mathdoc.fr/item/MBB_2024_19_a17/

[1] Schuster G.B., Long-Range Charge Transfer in DNA I, Topics in Current Chemistry, 236, Springer, 2004, 219 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b84245'>10.1007/b84245</ext-link>

[2] Hans-Achim W., H. B. Gray (eds.), Charge Transfer in DNA: From Mechanism to Application, John Wiley & Sons, 2006, 245 pp.

[3] Chakraborty T. (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, Springer, Berlin, 2007, 288 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-540-72494-0'>10.1007/978-3-540-72494-0</ext-link>

[4] J. C. Genereux, J. K. Barton, “Mechanisms for DNA Charge Transport”, Chem. Rev, 110:3 (2010), 1642–1662 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/cr900228f'>10.1021/cr900228f</ext-link>

[5] Schuster G.B. (ed.), Long-Range Charge Transfer in DNA II, Topics in Current Chemistry, 237, Springer, 2004, 245 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b14032'>10.1007/b14032</ext-link>

[6] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>

[7] Offenhausser A., R. Rinaldi (eds.), Nanobioelectronics for Electronics, Biology, and Medicine, Springer, New York, 2009, 337 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-0-387-09459-5'>10.1007/978-0-387-09459-5</ext-link>

[8] M. Ratner, “A brief history of molecular electronics”, Nature Nanotechnology, 8:6 (2013), 378–381 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nnano.2013.110'>10.1038/nnano.2013.110</ext-link>

[9] Jastrzebska-Perfect P., Spyropoulos G.D., Cea C., Zhao Z., Rauhala O.J., Viswanathan A., Sheth S.A., Gelinas J.N., Khodagholy D., “Mixed-conducting particulate composites for soft electronics”, Sci. Adv., 6:17 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1126/sciadv.aaz6767'>10.1126/sciadv.aaz6767</ext-link>

[10] V. D. Lakhno, A. V. Vinnikov, “Molekulyarnye ustroistva na osnove DNK”, Mat. biol. i bioinf, 16:1 (2021), 115–135 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2021.16.115'>10.17537/2021.16.115</ext-link>

[11] F. D. Lewis, R. M. Young, M. R. Wasielewski, “Tracking photoinduced charge separation in DNA: from start to finish”, Acc. Chem. Res, 51:8 (2018), 1746–1754 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.accounts.8b00090'>10.1021/acs.accounts.8b00090</ext-link>

[12] E. C.M. Tse, T. J. Zwang, S. Bedoya, J. K. Barton, “Effective distances for DNA-mediated charge transport between repair proteins”, ACS Central Sci, 5:1 (2019), 65–72 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acscentsci.8b00566'>10.1021/acscentsci.8b00566</ext-link>

[13] P. J. Kolbeck, M. Tisma, B. T. Analikwu, W. Vanderlinden, C. Dekker, J. Lipfert, “Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments”, Nucleic acids research, 52:1 (2024), 59–72 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkad1055'>10.1093/nar/gkad1055</ext-link>

[14] Starikov E. B., S. Tanaka, J. P. Lewis (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier Scientific, Amsterdam, 2006, 461 pp.

[15] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0951 7715/21/6/T02'>10.1088/0951 7715/21/6/T02</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2422372'>2422372</ext-link>

[16] J. H. Ojeda, R. P.A. Lima, F. Dominguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, J. Phys.: Condens Matter, 21 (2009), 285105 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/21/28/285105'>10.1088/0953-8984/21/28/285105</ext-link>

[17] V. D. Lakhno, “Davydov's solitons in homogeneous nucleotide chain”, International Journal of Quantum Chemistry, 110 (2010), 127–137 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.22264'>10.1002/qua.22264</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=913530'>913530</ext-link>

[18] T. Yu. Astakhova, V. A. Kashin, V. N. Likhachev, G. A. Vinogradov, “Polaron dynamics on the nonlinear lattice in the Su-Schrieffer-Heeger approximation. Exact and approximate solutions”, Acta Physica Polonica A, 129:3 (2016), 334–339 <ext-link ext-link-type='doi' href='https://doi.org/10.12693/APhysPolA.129.334'>10.12693/APhysPolA.129.334</ext-link>

[19] D. Rawtani, B. Kuntmal, Y. Agrawal, “Charge transfer in DNA and its diverse modelling approaches”, Frontiers in Life Science, 9:3 (2016), 214–225 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/21553769.2016.1207570'>10.1080/21553769.2016.1207570</ext-link>

[20] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Physics, 8:3 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[21] T. Holstein, “Studies of polaron motion: Part II. The “small” polaron”, Annals of Physics, 8:3 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[22] E. M. Conwell, “Charge transport in DNA in solution: The role of polarons”, PNAS, 102:25 (2005), 8795–9 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0501406102'>10.1073/pnas.0501406102</ext-link>

[23] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>

[24] J. A. Berashevich, A. D. Bookatz, T. Chakraborty, “The electric field effect and conduction in the Peyrard-Bishop-Holstein model”, J. Phys.: Condens. Matter, 20 (2008), 035207 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/20/03/035207'>10.1088/0953-8984/20/03/035207</ext-link>

[25] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>

[26] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>

[27] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>

[28] A. N. Korshunova, V. D. Lakhno, “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 88:9 (2018), 1312–1319 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2018.09.46414.14-18'>10.21883/JTF.2018.09.46414.14-18</ext-link>

[29] A. N. Korshunova, V. D. Lakhno, “Dva tipa ostsillyatsii kholsteinovskogo polyarona, ravnomerno dvizhuschegosya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 14:2 (2019), 477–487 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.477'>10.17537/2019.14.477</ext-link>

[30] A. N. Korshunova, V. D. Lakhno, “Polyaronnyi perenos zaryada v odnorodnoi Poly G/Poly C-tsepochke v modeli Peirarda-Bishopa-Kholsteina v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 90:9 (2020), 1528–1536 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2020.09.49686.397-19'>10.21883/JTF.2020.09.49686.397-19</ext-link>

[31] A. N. Korshunova, V. D. Lakhno, “Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements”, Math. Biol. Bioinf, 16:2 (2021), 411–421 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2021.16.411'>10.17537/2021.16.411</ext-link>

[32] A. N. Korshunova, V. D. Lakhno, “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 17:2 (2022), 452–464 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.452'>10.17537/2022.17.452</ext-link>

[33] A. N. Korshunova, V. D. Lakhno, “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Mat. biol. i bioinf, 18:2 (2023), 446–463 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.446'>10.17537/2023.18.446</ext-link>

[34] E. Diaz, R. P.A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.78.134303'>10.1103/PhysRevB.78.134303</ext-link>

[35] H. Zhongkai, H. Masayuki, I. Hajime, Z. Yang, “Transient dynamics of super Bloch oscillations of a 1D Holstein polaron under the influence of an external AC electric field”, Ann. Phys, 531 (2019), 1800303 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201800303'>10.1002/andp.201800303</ext-link>

[36] F. Bloch, “Quantum mechanics of electrons in crystal lattices [Uber die Quantenmechanik der Elektronen in Kristallgittern]”, Z. Phys, 52 (1928), 555–600 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01339455'>10.1007/BF01339455</ext-link>

[37] A. M. Bouchard, M. Luban, “Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices”, Phys. Rev. B, 52:7 (1995), 5105 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.52.5105'>10.1103/PhysRevB.52.5105</ext-link>

[38] V. D. Lakhno, N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain”, Jetp Lett, 79 (2004), 464–467 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1780553'>10.1134/1.1780553</ext-link>

[39] C. A.M. Seidel, A. Schulz, M. H.M. Sauer, “Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies”, J. Phys. Chem, 100:13 (1996), 5541–5553 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp951507c'>10.1021/jp951507c</ext-link>

[40] F. D. Lewis, Y. Wu, “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, J. Photochem. Photobiol, 2:1 (2001), 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1389-5567(01)00008-9'>10.1016/S1389-5567(01)00008-9</ext-link>

[41] A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp001109w'>10.1021/jp001109w</ext-link>

[42] J. Jortner, M. Bixon, A. Voityuk, N. Rosch, “Superexchange Mediated Charge Hopping in DNA”, J. Phys. Chem. A, 106:33 (2002), 7599–7606 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp014232b'>10.1021/jp014232b</ext-link>

[43] N. S. Fialko, E. V. Sobolev, V. D. Lakhno, “On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides”, JETP, 124:4 (2017), 635 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063776117040124'>10.1134/S1063776117040124</ext-link>

[44] E. Starikov, “Electron-phonon coupling in DNA: A systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/14786430500157110'>10.1080/14786430500157110</ext-link>

[45] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric field”, Chaos, Solitons and Fractals, 182 (2024), 114786 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2024.114786'>10.1016/j.chaos.2024.114786</ext-link>

[46] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72:2 (2005), 021912 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.72.021912'>10.1103/PhysRevE.72.021912</ext-link>

[47] H. S. Greenside, E. Helfand, “Numerical integration of stochastic differential equations-II”, Bell System Technical Journal, 60 (1981), 1927–1940 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/j.1538 7305.1981.tb00303.x'>10.1002/j.1538 7305.1981.tb00303.x</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0464.65101'>0464.65101</ext-link>

[48] N. S. Fialko, “Smeshannyi algoritm rascheta dinamiki perenosa zaryada v DNK na bolshikh vremennykh intervalakh”, Kompyuternye issledovaniya i modelirovanie, 2:1 (2010), 63–72 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2010-2-1-63-72'>10.20537/2076-7633-2010-2-1-63-72</ext-link>

[49] V. D. Lakhno, N. S. Fialko, “Podvizhnost dyrok v odnorodnoi nukleotidnoi tsepochke”, Pisma v ZhETF, 78:5 (2003), 786–788 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1625737'>10.1134/1.1625737</ext-link>

[50] I. G. Lang, Yu. A. Firsov, “Kinetic Theory of Semiconductors with Low Mobility”, JETP, 16:5 (1963), 1301

[51] N. S. Fialko, M. M. Olshevets, V. D. Lakhno, “Chislennoe issledovanie modeli Kholsteina v raznykh termostatakh”, Kompyuternye issledovaniya i modelirovanie, 16:2 (2024), 489–502 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2024-16-2-489-502'>10.20537/2076-7633-2024-16-2-489-502</ext-link>