Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 418-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

The tubulin cytoskeleton, consisting of a network of microtubules, is a key intracellular system that supports the execution of numerous vital cellular functions. Its operation is regulated by post-translational modifications, which are introduced and edited by enzymes, recognized by regulatory proteins, or directly influence the properties of tubulins. One such modification is the polyglutamylation of the C-terminal regions of tubulin. In this study, we investigated the effect of adding additional glutamate residues on the dynamics of the C-terminal regions of $\alpha$-tubulin and their interactions with the globular domains of tubulin using all-atom molecular dynamics simulations. The analysis of simulation data totaling over three microseconds for both modified and unmodified tubulin revealed that polyglutamylation decreases the average distance between the base and the tip of the unstructured C-terminal region, increasing the likelihood of its contact with the globular domain of the protein, including the polymerization interface. These findings suggest that polyglutamylation of the C-terminal regions of $\alpha$-tubulin may act as a factor influencing the kinetics of microtubule assembly.
@article{MBB_2024_19_a16,
     author = {E. G. Kholina and N. B. Gudimchuk},
     title = {Exploring the effects of polyglutamylation of $\alpha$-tubulin {C-terminal} regions through all-atom molecular dynamics},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {418--426},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a16/}
}
TY  - JOUR
AU  - E. G. Kholina
AU  - N. B. Gudimchuk
TI  - Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 418
EP  - 426
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a16/
LA  - ru
ID  - MBB_2024_19_a16
ER  - 
%0 Journal Article
%A E. G. Kholina
%A N. B. Gudimchuk
%T Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 418-426
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a16/
%G ru
%F MBB_2024_19_a16
E. G. Kholina; N. B. Gudimchuk. Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 418-426. http://geodesic.mathdoc.fr/item/MBB_2024_19_a16/

[1] N. B. Gudimchuk, J. R. McIntosh, “Regulation of Microtubule Dynamics, Mechanics and Function through the Growing Tip”, Nat. Rev. Mol. Cell Biol, 22 (2021), 777–795

[2] T. Mitchison, M. Kirschner, “Dynamic Instability of Microtubule Growth”, Nature, 312 (1984), 237–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/312237a0'>10.1038/312237a0</ext-link>

[3] A. Desai, T. J. Mitchison, “Microtubule polymerization dynamics”, Annu. Rev. Cell Dev. Biol, 13 (1997), 83–117 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.cellbio.13.1.83'>10.1146/annurev.cellbio.13.1.83</ext-link>

[4] N. B. Gudimchuk, V. V. Alexandrova, “Measuring and Modeling Forces Generated by Microtubules”, Biophys. Rev, 15 (2023), 1095–1110 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12551-023-01161-7'>10.1007/s12551-023-01161-7</ext-link>

[5] S. Inoue, E. D. Salmon, “Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements”, Mol. Biol. Cell, 6 (1995), 1619–1640 <ext-link ext-link-type='doi' href='https://doi.org/10.1091/mbc.6.12.1619'>10.1091/mbc.6.12.1619</ext-link>

[6] A. Roll-Mecak, “The Tubulin Code in Microtubule Dynamics and Information Encoding”, Dev. Cell, 54 (2020), 7–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.devcel.2020.06.008'>10.1016/j.devcel.2020.06.008</ext-link>

[7] A. Roll-Mecak, “Intrinsically Disordered Tubulin Tails: Complex Tuners of Microtubule Functions?”, Semin Cell Dev. Biol., 37 (2015), 11–19 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.semcdb.2014.09.026'>10.1016/j.semcdb.2014.09.026</ext-link>

[8] A. Vemu, J. Atherton, J. O. Spector, A. Szyk, C. A. Moores, A. Roll-Mecak, “Structure and Dynamics of Single-Isoform Recombinant Neuronal Human Tubulin”, Journal of Biological Chemistry, 291 (2016), 12907–12915 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.C116.731133'>10.1074/jbc.C116.731133</ext-link>

[9] J. Chen, E. Kholina, A. Szyk, V. A. Fedorov, I. Kovalenko, N. Gudimchuk, A. Roll Mecak, “$\alpha$-Tubulin Tail Modifications Regulate Microtubule Stability through Selective Effector Recruitment, not Changes in Intrinsic Polymer Dynamics”, Dev. Cell., 56 (2021), 2016–2028.e4 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.devcel.2021.05.005'>10.1016/j.devcel.2021.05.005</ext-link>

[10] K. K. Mahalingan, D. A. Grotjahn, Y. Li, G. C. Lander, E. A. Zehr, A. Roll-Mecak, “Structural Basis for-Tubulin-Specific and Modification State-Dependent Glutamylation”, Nat. Chem. Biol, 20 (2024), 1493–1504

[11] L. S. Bigman, Y. Levy, “Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications”, J. Mol. Biol, 433 (2021), 166988 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2021.166988'>10.1016/j.jmb.2021.166988</ext-link>

[12] B. J. LaFrance, J. Roostalu, G. Henkin, B. J. Greber, R. Zhang, D. Normanno, C. O. McCollum, T. Surrey, E. Nogales, “Structural Transitions in the GTP Cap Visualized by Cryo-Electron Microscopy of Catalytically Inactive Microtubules”, Proceedings of the National Academy of Sciences, 119 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.2114994119'>10.1073/pnas.2114994119</ext-link>

[13] B. Webb, A. Sali, “Comparative Protein Structure Modeling Using MODELLER”, Curr. Protoc. Bioinformatics, 54 (2016) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cpbi.3'>10.1002/cpbi.3</ext-link>

[14] The PyMOL Molecular Graphics System, Version 2.5, Schrodinger, LLC (accessed 23.11.2024) <ext-link ext-link-type='uri' href='https://www.pymol.org'>https://www.pymol.org</ext-link>

[15] M. H.M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions”, J. Chem. Theory Comput, 7 (2011), 525–537

[16] A. Morozenko, Stuchebrukhov A. A., “Dowser++, a New Method of Hydrating Protein Structures”, Proteins: Structure, Function, and Bioinformatics, 84 (2016), 1347–1357 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.25081'>10.1002/prot.25081</ext-link>

[17] A. D. Mackerell, M. Feig, C. L. Brooks, “Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations”, J. Comput. Chem, 25 (2004), 1400–1415 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20065'>10.1002/jcc.20065</ext-link>

[18] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmuller, A. D. MacKerell, “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins”, Nat. Methods, 14 (2017), 71–73 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.4067'>10.1038/nmeth.4067</ext-link>

[19] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers”, SoftwareX, 1-2 (2015), 19–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.softx.2015.06.001'>10.1016/j.softx.2015.06.001</ext-link>

[20] V. A. Fedorov, I. B. Kovalenko, “Vliyanie mutatsii v kataliticheskom saite na formu i mekhaniku protofilamentov tubulina”, Mat. biol. i bioinf., 19:2 (2024), 393–401 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2024.19.393'>10.17537/2024.19.393</ext-link>

[21] M. Parrinello, A. Rahman, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method”, J. Appl. Phys, 52 (1981), 7182–7190 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.328693'>10.1063/1.328693</ext-link>

[22] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A Smooth Particle Mesh Ewald Method”, J. Chem. Phys, 103 (1995), 8577–8593 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.470117'>10.1063/1.470117</ext-link>