Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a15, author = {Noor N. Al-Hayani and Mohammed R. Mohaisen and Sara A. A. Rashid}, title = {Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis {C} virus {E2} protein}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {402--417}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a15/} }
TY - JOUR AU - Noor N. Al-Hayani AU - Mohammed R. Mohaisen AU - Sara A. A. Rashid TI - Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 402 EP - 417 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a15/ LA - en ID - MBB_2024_19_a15 ER -
%0 Journal Article %A Noor N. Al-Hayani %A Mohammed R. Mohaisen %A Sara A. A. Rashid %T Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 402-417 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a15/ %G en %F MBB_2024_19_a15
Noor N. Al-Hayani; Mohammed R. Mohaisen; Sara A. A. Rashid. Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 402-417. http://geodesic.mathdoc.fr/item/MBB_2024_19_a15/
[1] P. Mehta, L. M. Grant, A. K.R. Reddivari, “Viral Hepatitis”, StatPearls, StatPearls Publishing, Treasure Island (FL), 2024 (accessed 22.11.2024) <ext-link ext-link-type='uri' href='https://www.ncbi.nlm.nih.gov/books/NBK554549/'>https://www.ncbi.nlm.nih.gov/books/NBK554549/</ext-link>
[2] V. Khullar, R. J. Firpi, “Hepatitis C cirrhosis: New perspectives for diagnosis and treatment”, World J. Hepatol, 7:14 (2015), 1843–1855 <ext-link ext-link-type='doi' href='https://doi.org/10.4254/wjh.v7.i14.1843'>10.4254/wjh.v7.i14.1843</ext-link>
[3] P. A. Cortesi, C. Fornari, S. Conti, I. C. Antonazzo, P. Ferrara, A. Ahmed, C. L. Andrei, T. Andrei, A. A. Artamonov, M. Banach et al, “Hepatitis B and C in Europe: an update from the Global Burden of Disease Study 2019”, Lancet Public Health, 8:9 (2023), e701–e716 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S2468-2667(23)00149-4'>10.1016/S2468-2667(23)00149-4</ext-link>
[4] R. J. Center, I. Boo, L. Phu, J. McGregor, P. Poumbourios, H. E. Drummer, “Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine”, J. Biol. Chem, 295:21 (2020), 7179–7192 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.RA120.013015'>10.1074/jbc.RA120.013015</ext-link>
[5] E. Laugel, C. Hartard, H. Jeulin, S. Berger, V. Venard, J. P. Bronowicki, E. Schvoerer, “Full length genome sequencing of RNA viruses-How the approach can enlighten us on hepatitis C and hepatitis E viruses”, Rev. Med. Virol., 31:4 (2021), e2197 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/rmv.2197'>10.1002/rmv.2197</ext-link>
[6] H. D. Daniel, J. David, S. Raghuraman, M. Gnanamony, G. M. Chandy, G. Sridharan, P. Abraham, “Comparison of Three Different Hepatitis C Virus Genotyping Methods: 5'NCR PCR-RFLP, Core Type-Specific PCR, and NS5b Sequencing in a Tertiary Care Hospital in South India”, J. Clin. Lab. Anal, 31:3 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcla.22045'>10.1002/jcla.22045</ext-link>
[7] D. Pascut, M. Hoang, N. N.Q. Nguyen, M. Y. Pratama, C. Tiribelli, “HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development”, Cancers (Basel), 13:10 (2021), 2485 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cancers13102485'>10.3390/cancers13102485</ext-link>
[8] J. H. Hoofnagle, “Hepatitis C: the clinical spectrum of disease”, Hepatology, 26 (1997), 15S–20S <ext-link ext-link-type='doi' href='https://doi.org/10.1002/hep.510260703'>10.1002/hep.510260703</ext-link>
[9] A. Kumar, T. C. Rohe, E. J. Elrod, A. G. Khan, A. D. Dearborn, R. Kissinger, A. Grakoui, J. Marcotrigiano, “Regions of hepatitis C virus E2 required for membrane association”, Nat. Commun, 14:1 (2023) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-023-36183-y'>10.1038/s41467-023-36183-y</ext-link>
[10] J. Yang, J. L. Qi, X. X. Wang, X. H. Li, R. Jin, B. Y. Liu, H. X. Liu, H. Y. Rao, “The burden of hepatitis C virus in the world. China, India, and the United States from 1990 to 2019”, Front. Public Health, 11 (2023) <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fpubh.2023.1041201'>10.3389/fpubh.2023.1041201</ext-link>
[11] S. Roger, A. Ducancelle, H. Le Guillou-Guillemette, C. Gaudy, F. Lunel, “HCV virology and diagnosis”, Clin. Res. Hepatol. Gastroenterol, 45:3 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.clinre.2021.101626'>10.1016/j.clinre.2021.101626</ext-link>
[12] M. Umer, M. Iqbal, “Hepatitis C virus prevalence and genotype distribution in Pakistan: Comprehensive review of recent data”, World J. Gastroenterol, 22:4 (2016), 1684–1700 <ext-link ext-link-type='doi' href='https://doi.org/10.3748/wjg.v22.i4.1684'>10.3748/wjg.v22.i4.1684</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4333466'>4333466</ext-link>
[13] X. Pan, T. Kortemme, “Recent advances in de novo protein design: Principles, methods, and applications”, J. Biol. Chem, 296 (2021), 100558 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbc.2021.100558'>10.1016/j.jbc.2021.100558</ext-link>
[14] J. C. Jakobsen, E. E. Nielsen, J. Feinberg, K. K. Katakam, K. Fobian, G. Hauser, G. Poropat, S. Djurisic, K. H. Weiss, M. Bjelakovic et al, “Direct-acting antivirals for chronic hepatitis C”, Cochrane Database Syst. Rev, 2017, no. 9, CD012143 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/14651858.CD012143.pub3'>10.1002/14651858.CD012143.pub3</ext-link>
[15] J. A. Gonzales Zamora, “Adverse Effects of Direct Acting Antivirals in HIV/HCV Coinfected Patients: A 4-Year Experience in Miami, Florida”, Diseases, 6:2 (2018) <ext-link ext-link-type='doi' href='https://doi.org/10.3390/diseases6020051'>10.3390/diseases6020051</ext-link>
[16] B. G. Pierce, Z. Y. Keck, R. Wang, P. Lau, K. Garagusi, K. Elkholy, E. A. Toth, R. A. Urbanowicz, J. D. Guest, P. Agnihotri et al, “Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization”, J. Virol, 94:22 (2020), 51 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JVI.00704-20'>10.1128/JVI.00704-20</ext-link>
[17] R. A. Ali, E. A. Awadalla, Y. A. Amin, S. S. Fouad, M. A. E. B. Ahmed, M. H. Hassan, E. Abdel Kahaar, R. H. Abdel-Aziz, “The deleterious effects of sofosbuvir and ribavirin (antiviral drugs against hepatitis C virus) on different body systems in male albino rats regarding reproductive, hematological, biochemical, hepatic, and renal profiles and histopathological changes”, Sci. Rep, 14:1 (2024), 5682 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-024-55950-5'>10.1038/s41598-024-55950-5</ext-link>
[18] D. Sepulveda-Crespo, S. Resino, I. Martinez, “Hepatitis C virus vaccine design: focus on the humoral immune response”, J. Biomed. Sci, 27:1 (2020), 78 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12929-020-00669-4'>10.1186/s12929-020-00669-4</ext-link>
[19] T. Kucera, M. Togninalli, L. Meng-Papaxanthos, “Conditional generative modeling for de novo protein design with hierarchical functions”, Bioinformatics, 38:13 (2022), 3454–3461 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btac353'>10.1093/bioinformatics/btac353</ext-link>
[20] S. Ovchinnikov, P. S. Huang, “Structure-based protein design with deep learning”, Curr. Opin. Chem. Biol, 65 (2021), 136–144 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cbpa.2021.08.004'>10.1016/j.cbpa.2021.08.004</ext-link>
[21] N. Ferruz, M. Heinzinger, M. Akdel, A. Goncearenco, L. Naef, C. Dallago, “From sequence to function through structure: Deep learning for protein design”, Comput. Struct. Biotechnol. J., 21 (2023), 238–250 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.csbj.2022.11.014'>10.1016/j.csbj.2022.11.014</ext-link>
[22] P. Koehl, M. Levitt, “De novo protein design. I. In search of stability and specificity”, J. Mol. Biol, 293:5 (1999), 1161–1181 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1999.3211'>10.1006/jmbi.1999.3211</ext-link>
[23] The UniProt Consortium, “UniProt: the universal protein knowledgebase in 2021”, Nucleic Acids Res., 49:D1 (2021), D480-D489 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkaa1100'>10.1093/nar/gkaa1100</ext-link>
[24] J. Segura, Y. Rose, C. Bi, J. Duarte, S. K. Burley, S. Bittrich, “RCSB Protein Data Bank: visualizing groups of experimentally determined PDB structures alongside computed structure models of proteins”, Front. Bioinform, 3 (2023), 1311287 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fbinf.2023.1311287'>10.3389/fbinf.2023.1311287</ext-link>
[25] C. C. Huang, E. C. Meng, J. H. Morris, E. F. Pettersen, T. E. Ferrin, “Enhancing UCSF Chimera through web services”, Nucleic Acids Res., 42 (2014), W478-W484 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gku377'>10.1093/nar/gku377</ext-link>
[26] T. Paysan-Lafosse, M. Blum, S. Chuguransky, T. Grego, B. L. Pinto, G. A. Salazar, M. L. Bileschi, P. Bork, A. Bridge, L. Colwell et al, “InterPro in 2022”, Nucleic Acids Res., 51 (2023), D418-D427 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkac993'>10.1093/nar/gkac993</ext-link>
[27] M. A. Lill, M. L. Danielson, “Computer-aided drug design platform using PyMOL”, J. Comput. Aided Mol. Des, 25:1 (2010), 13–19 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10822-010-9395-8'>10.1007/s10822-010-9395-8</ext-link>
[28] M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood, A. Laydon et al, “AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models”, Nucleic Acids Res., 50:D1 (2022), D439-D444 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkab1061'>10.1093/nar/gkab1061</ext-link>
[29] F. N. Haron, A. Azazi, K. H. Chua, Y. A.L. Lim, P. C. Lee, C. H. Chew, “In silico structural modeling and quality assessment of Plasmodium knowlesi apical membrane antigen 1 using comparative protein models”, Trop. Biomed, 39:3 (2022), 394–401 <ext-link ext-link-type='doi' href='https://doi.org/10.47665/tb.39.3.009'>10.47665/tb.39.3.009</ext-link>
[30] A. Messaoudi, H. Belguith, J. Ben Hamida, “Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1-lactamase”, Theor. Biol. Med. Model, 10 (2013), 22 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1742-4682-10-22'>10.1186/1742-4682-10-22</ext-link>
[31] I. T. Desta, S. Kotelnikov, G. Jones, U. Ghani, M. Abyzov, Y. Kholodov, D. M. Standley, D. Beglov, S. Vajda, D. Kozakov, “The ClusPro AbEMap web server for the prediction of antibody epitopes”, Nat. Protoc, 18:6 (2023), 1814–1840 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41596-023 00826-7'>10.1038/s41596-023 00826-7</ext-link>
[32] A. Alekseenko, M. Ignatov, G. Jones, M. Sabitova, D. Kozakov, “Protein-Protein and Protein Peptide Docking with ClusPro Server”, Methods Mol. Biol, 2165 (2020), 157–174 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-0716-0708-4_9'>10.1007/978-1-0716-0708-4_9</ext-link>
[33] R. A. Laskowski, J. M. Thornton, “PDBsum extras: SARS-CoV-2 and AlphaFold models”, Protein Sci, 31:1 (2022), 283–289 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.4238'>10.1002/pro.4238</ext-link>
[34] R. A. Laskowski, J. Jablonska, L. Pravda, R. S. Varekova, J. M. Thornton, “PDBsum: Structural summaries of PDB entries”, Protein Sci, 27:1 (2018), 129–134 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.3289'>10.1002/pro.3289</ext-link>
[35] N. Ferruz, S. Schmidt, B. Hocker, “ProtGPT2 is a deep unsupervised language model for protein design”, Nat. Commun, 13:1 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467 022-32007-7'>10.1038/s41467 022-32007-7</ext-link>
[36] P. Bradley, K. M. Misura, D. Baker, “Toward high-resolution de novo structure prediction for small proteins”, Science, 309 (2005), 1868–1871 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1113801'>10.1126/science.1113801</ext-link>
[37] J. C. Booth, U. Kumar, D. Webster, J. Monjardino, H. C. Thomas, “Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients”, Hepatology, 27:1 (1998), 223–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/hep.510270134'>10.1002/hep.510270134</ext-link>
[38] U. A. Ashfaq, T. Javed, S. Rehman, Z. Nawaz, S. Riazuddin, “An overview of HCV molecular biology, replication and immune responses”, Virol. J., 8 (2011), 161 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1743-422X-8-161'>10.1186/1743-422X-8-161</ext-link>
[39] M. Martinello, S. S. Solomon, N. A. Terrault, G. J. Dore, “Hepatitis C”, Lancet, 402:10407 (2023), 1085–1096 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(23)01320-X'>10.1016/S0140-6736(23)01320-X</ext-link>
[40] P. Piselli, D. Serraino, M. Fusco, E. Girardi, A. Pirozzi, F. Toffolutti, C. Cimaglia, M. Taborelli; Collaborating Study Group, “Hepatitis C virus infection and risk of liver-related and non liver-related deaths: a population-based cohort study in Naples, southern Italy”, BMC Infect. Dis, 21:1 (2021) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12879-021-06336-9'>10.1186/s12879-021-06336-9</ext-link>
[41] J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles et al, “De novo design of protein structure and function with RFdiffusion”, Nature, 620:7976 (2023), 1089–1100 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-023 06415-8'>10.1038/s41586-023 06415-8</ext-link>
[42] L. Kong, E. Giang, T. Nieusma, R. U. Kadam, K. E. Cogburn, Y. Hua, X. Dai, R. L. Stanfield, D. R. Burton, A. B. Ward, I. A. Wilson, M. Law, “Hepatitis C virus E2 envelope glycoprotein core structure”, Science, 342:6162 (2013), 1090–1094 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1243876'>10.1126/science.1243876</ext-link>
[43] M. O. Dobrica, A. van Eerde, C. Tucureanu, A. Onu, L. Paruch, I. Caras, E. Vlase, H. Steen, S. Haugslien, D. Alonzi et al, “Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus-neutralizing activity in vaccinated mice”, Plant Biotechnol. J., 19:10 (2021), 2027–2039 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/pbi.13631'>10.1111/pbi.13631</ext-link>
[44] W. Zhong, A. S. Uss, E. Ferrari, J. Y. Lau, Z. Hong, “De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase”, J. Virol, 74:4 (2000), 2017–2022 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/jvi.74.4.2017-2022.2000'>10.1128/jvi.74.4.2017-2022.2000</ext-link>
[45] L. He, N. Tzarum, X. Lin, B. Shapero, C. Sou, C. J. Mann, A. Stano, L. Zhang, K. Nagy, E. Giang et al, “Proof of concept for rational design of hepatitis C virus E2 core nanoparticle vaccines”, Sci. Adv, 6:16 (2020), eaaz6225 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/sciadv.aaz6225'>10.1126/sciadv.aaz6225</ext-link>
[46] Y. Shirasago, H. Fukazawa, S. Nagase, Y. Shimizu, T. Mizukami, T. Wakita, T. Suzuki, H. Tani, M. Kondoh, T. Kuroda et al, “A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection”, Sci. Rep, 12:1 (2022), 20243 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-022-23824-3'>10.1038/s41598-022-23824-3</ext-link>
[47] E. G. Cormier, R. J. Durso, F. Tsamis, L. Boussemart, C. Manix, W. C. Olson, J. P. Gardner, T. Dragic, “L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus”, Proc. Natl. Acad. Sci. USA, 101:39 (2004), 14067–14072 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0405695101'>10.1073/pnas.0405695101</ext-link>
[48] N. N.T. Nguyen, Y. S. Lim, L. P. Nguyen, S. C. Tran, T. T.D. Luong, T. T.T. Nguyen, H. T. Pham, H. N. Mai, J. W. Choi, S. S. Han et al, “Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation”, Sci. Rep, 8:1 (2018), 15486 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-018-33861-6'>10.1038/s41598-018-33861-6</ext-link>
[49] J. Lyu, H. Imachi, K. Fukunaga, T. Yoshimoto, H. Zhang, K. Murao, “Roles of lipoprotein receptors in the entry of hepatitis C virus”, World J. Hepatol, 7:24 (2015), 2535–2542 <ext-link ext-link-type='doi' href='https://doi.org/10.4254/wjh.v7.i24.2535'>10.4254/wjh.v7.i24.2535</ext-link>