The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 393-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

Alpha-beta heterodimers of tubulin proteins serve as the building blocks of microtubules, which are key biopolymers forming one of the principal systems of the cellular cytoskeleton. A detailed study of these building blocks, as well as their alterations caused by point mutations, contributes to a deeper understanding of physiological and pathological processes related to the cytoskeleton. This study presents an analysis of the impact of the E254N point mutation in the catalytic site of $\alpha$-tubulin on the bending conformations of human recombinant tubulin tetramers using molecular dynamics methods. The models were constructed based on high-resolution cryo-electron microscopy data, allowing the reconstruction of three-dimensional structures of both wild-type and mutant tetramers. The simulations revealed that the primary difference between wild-type and mutant tubulin lies in the equilibrium bending direction of the protofilaments, while the bending amplitude, twisting, and associated stiffness remain largely unchanged. We propose that the observed differences in bending directions may be related to variations in protofilament tilts within microtubules, which aligns with previously published cryo-electron microscopy data. These findings provide valuable insights into the principles underlying the formation of the polymeric structure of microtubules based on the properties of their individual building blocks.
@article{MBB_2024_19_a14,
     author = {V. A. Fedorov and I. B. Kovalenko},
     title = {The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {393--401},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/}
}
TY  - JOUR
AU  - V. A. Fedorov
AU  - I. B. Kovalenko
TI  - The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 393
EP  - 401
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/
LA  - ru
ID  - MBB_2024_19_a14
ER  - 
%0 Journal Article
%A V. A. Fedorov
%A I. B. Kovalenko
%T The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 393-401
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/
%G ru
%F MBB_2024_19_a14
V. A. Fedorov; I. B. Kovalenko. The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 393-401. http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/

[1] A. Desai, T. J. Mitchison, “Microtubule polymerization dynamics”, Annu. Rev. Cell. Dev. Biol, 13 (1997), 83–117 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.cellbio.13.1.83'>10.1146/annurev.cellbio.13.1.83</ext-link>

[2] N. B. Gudimchuk, J. R. McIntosh, “Regulation of Microtubule Dynamics, Mechanics and Function through the Growing Tip”, Nat. Rev. Mol. Cell Biol, 22 (2021), 777–795 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41580-021-00399-x'>10.1038/s41580-021-00399-x</ext-link>

[3] T. Mitchison, M. Kirschner, “Dynamic Instability of Microtubule Growth”, Nature, 312 (1984), 237–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/312237a0'>10.1038/312237a0</ext-link>

[4] R. C. Weisenberg, W. J. Deery, P. J. Dickinson, “Tubulin-Nucleotide Interactions during the Polymerization and Depolymerization of Microtubules”, Biochemistry, 15 (1976), 4248–4254 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00664a018'>10.1021/bi00664a018</ext-link>

[5] D. N. Drechsel, M. W. Kirschner, “The Minimum GTP Cap Required to Stabilize Microtubules”, Current Biology, 4 (1994), 1053–1061 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0960-9822(00)00243-8'>10.1016/S0960-9822(00)00243-8</ext-link>

[6] J. Roostalu, C. Thomas, N. I. Cade, S. Kunzelmann, I. A. Taylor, T. Surrey, “The Speed of GTP Hydrolysis Determines GTP Cap Size and Controls Microtubule Stability”, Elife, 9 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.51992'>10.7554/eLife.51992</ext-link>

[7] B. J. LaFrance, J. Roostalu, G. Henkin, B. J. Greber, R. Zhang, D. Normanno, C. O. McCollum, T. Surrey, E. Nogales, “Structural Transitions in the GTP Cap Visualized by Cryo Electron Microscopy of Catalytically Inactive Microtubules”, Proceedings of the National Academy of Sciences, 119 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.2114994119'>10.1073/pnas.2114994119</ext-link>

[8] G. M. Alushin, G. C. Lander, E. H. Kellogg, R. Zhang, D. Baker, E. Nogales, “High Resolution Microtubule Structures Reveal the Structural Transitions in $A\beta$-Tubulin upon GTP Hydrolysis”, Cell, 157 (2014), 1117–1129 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2014.03.053'>10.1016/j.cell.2014.03.053</ext-link>

[9] T. Muller-Reichert, D. Chretien, F. Severin, A. A. Hyman, “Structural Changes at Microtubule Ends Accompanying GTP Hydrolysis: Information from a Slowly Hydrolyzable Analogue of GTP, Guanylyl $(\alpha,\beta)$Methylenediphosphonate”, Proceedings of the National Academy of Sciences, 95 (1998), 3661–3666 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.95.7.3661'>10.1073/pnas.95.7.3661</ext-link>

[10] V. A. Fedorov, P. S. Orekhov, E. G. Kholina, A. A. Zhmurov, F. I. Ataullakhanov, I. B. Kovalenko, N. B. Gudimchuk, “Mechanical Properties of Tubulin Intra- and Inter Dimer Interfaces and Their Implications for Microtubule Dynamic Instability”, PLoS Comput. Biol, 15 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1007327'>10.1371/journal.pcbi.1007327</ext-link>

[11] B. Webb, A. Sali, “Comparative Protein Structure Modeling Using MODELLER”, Curr. Protoc. Bioinformatics, 54 (2016) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cpbi.3'>10.1002/cpbi.3</ext-link>

[12] M. H.M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions”, J. Chem. Theory Comput, 7 (2011), 525–537 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ct100578z'>10.1021/ct100578z</ext-link>

[13] A. Morozenko, Stuchebrukhov A. A., “Dowser++, a New Method of Hydrating Protein Structures”, Proteins: Structure, Function, and Bioinformatics, 84 (2016), 1347–1357 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.25081'>10.1002/prot.25081</ext-link>

[14] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmuller, A. D. MacKerell, “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins”, Nat. Methods, 14 (2017), 71–73 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.4067'>10.1038/nmeth.4067</ext-link>

[15] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers”, SoftwareX, 1-2 (2015), 19–25

[16] M. Parrinello, A. Rahman, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method”, J. Appl. Phys, 52 (1981), 7182–7190 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.328693'>10.1063/1.328693</ext-link>

[17] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A Smooth Particle Mesh Ewald Method”, J. Chem. Phys, 103 (1995), 8577–8593

[18] V. Fedorov, E. Kholina, N. Gudimchuk, I. Kovalenko, “High-Performance Computing of Microtubule Protofilament Dynamics by Means of All-Atom Molecular Modeling”, Supercomput. Front. Innov, 10 (2023), 62–68

[19] The PyMOL Molecular Graphics System, Version 2. 5, Schrodinger, LLC (accessed 20.11.2024) <ext-link ext-link-type='uri' href='https://www.pymol.org'>https://www.pymol.org</ext-link>

[20] A. Grafmuller, G. A. Voth, “Intrinsic Bending of Microtubule Protofilaments”, Structure, 19 (2011), 409–417