Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a14, author = {V. A. Fedorov and I. B. Kovalenko}, title = {The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {393--401}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/} }
TY - JOUR AU - V. A. Fedorov AU - I. B. Kovalenko TI - The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 393 EP - 401 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/ LA - ru ID - MBB_2024_19_a14 ER -
%0 Journal Article %A V. A. Fedorov %A I. B. Kovalenko %T The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 393-401 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/ %G ru %F MBB_2024_19_a14
V. A. Fedorov; I. B. Kovalenko. The impact of a catalytic site mutation on the shape and mechanics of tubulin protofilaments. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 393-401. http://geodesic.mathdoc.fr/item/MBB_2024_19_a14/
[1] A. Desai, T. J. Mitchison, “Microtubule polymerization dynamics”, Annu. Rev. Cell. Dev. Biol, 13 (1997), 83–117 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.cellbio.13.1.83'>10.1146/annurev.cellbio.13.1.83</ext-link>
[2] N. B. Gudimchuk, J. R. McIntosh, “Regulation of Microtubule Dynamics, Mechanics and Function through the Growing Tip”, Nat. Rev. Mol. Cell Biol, 22 (2021), 777–795 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41580-021-00399-x'>10.1038/s41580-021-00399-x</ext-link>
[3] T. Mitchison, M. Kirschner, “Dynamic Instability of Microtubule Growth”, Nature, 312 (1984), 237–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/312237a0'>10.1038/312237a0</ext-link>
[4] R. C. Weisenberg, W. J. Deery, P. J. Dickinson, “Tubulin-Nucleotide Interactions during the Polymerization and Depolymerization of Microtubules”, Biochemistry, 15 (1976), 4248–4254 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00664a018'>10.1021/bi00664a018</ext-link>
[5] D. N. Drechsel, M. W. Kirschner, “The Minimum GTP Cap Required to Stabilize Microtubules”, Current Biology, 4 (1994), 1053–1061 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0960-9822(00)00243-8'>10.1016/S0960-9822(00)00243-8</ext-link>
[6] J. Roostalu, C. Thomas, N. I. Cade, S. Kunzelmann, I. A. Taylor, T. Surrey, “The Speed of GTP Hydrolysis Determines GTP Cap Size and Controls Microtubule Stability”, Elife, 9 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.51992'>10.7554/eLife.51992</ext-link>
[7] B. J. LaFrance, J. Roostalu, G. Henkin, B. J. Greber, R. Zhang, D. Normanno, C. O. McCollum, T. Surrey, E. Nogales, “Structural Transitions in the GTP Cap Visualized by Cryo Electron Microscopy of Catalytically Inactive Microtubules”, Proceedings of the National Academy of Sciences, 119 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.2114994119'>10.1073/pnas.2114994119</ext-link>
[8] G. M. Alushin, G. C. Lander, E. H. Kellogg, R. Zhang, D. Baker, E. Nogales, “High Resolution Microtubule Structures Reveal the Structural Transitions in $A\beta$-Tubulin upon GTP Hydrolysis”, Cell, 157 (2014), 1117–1129 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2014.03.053'>10.1016/j.cell.2014.03.053</ext-link>
[9] T. Muller-Reichert, D. Chretien, F. Severin, A. A. Hyman, “Structural Changes at Microtubule Ends Accompanying GTP Hydrolysis: Information from a Slowly Hydrolyzable Analogue of GTP, Guanylyl $(\alpha,\beta)$Methylenediphosphonate”, Proceedings of the National Academy of Sciences, 95 (1998), 3661–3666 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.95.7.3661'>10.1073/pnas.95.7.3661</ext-link>
[10] V. A. Fedorov, P. S. Orekhov, E. G. Kholina, A. A. Zhmurov, F. I. Ataullakhanov, I. B. Kovalenko, N. B. Gudimchuk, “Mechanical Properties of Tubulin Intra- and Inter Dimer Interfaces and Their Implications for Microtubule Dynamic Instability”, PLoS Comput. Biol, 15 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1007327'>10.1371/journal.pcbi.1007327</ext-link>
[11] B. Webb, A. Sali, “Comparative Protein Structure Modeling Using MODELLER”, Curr. Protoc. Bioinformatics, 54 (2016) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cpbi.3'>10.1002/cpbi.3</ext-link>
[12] M. H.M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions”, J. Chem. Theory Comput, 7 (2011), 525–537 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ct100578z'>10.1021/ct100578z</ext-link>
[13] A. Morozenko, Stuchebrukhov A. A., “Dowser++, a New Method of Hydrating Protein Structures”, Proteins: Structure, Function, and Bioinformatics, 84 (2016), 1347–1357 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.25081'>10.1002/prot.25081</ext-link>
[14] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmuller, A. D. MacKerell, “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins”, Nat. Methods, 14 (2017), 71–73 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.4067'>10.1038/nmeth.4067</ext-link>
[15] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers”, SoftwareX, 1-2 (2015), 19–25
[16] M. Parrinello, A. Rahman, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method”, J. Appl. Phys, 52 (1981), 7182–7190 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.328693'>10.1063/1.328693</ext-link>
[17] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A Smooth Particle Mesh Ewald Method”, J. Chem. Phys, 103 (1995), 8577–8593
[18] V. Fedorov, E. Kholina, N. Gudimchuk, I. Kovalenko, “High-Performance Computing of Microtubule Protofilament Dynamics by Means of All-Atom Molecular Modeling”, Supercomput. Front. Innov, 10 (2023), 62–68
[19] The PyMOL Molecular Graphics System, Version 2. 5, Schrodinger, LLC (accessed 20.11.2024) <ext-link ext-link-type='uri' href='https://www.pymol.org'>https://www.pymol.org</ext-link>
[20] A. Grafmuller, G. A. Voth, “Intrinsic Bending of Microtubule Protofilaments”, Structure, 19 (2011), 409–417