Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a13, author = {A. E. Medvedev and A. D. Erokhin and Yu. M. Prikhod'ko and M. O. Zhulkov}, title = {Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {354--368}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/} }
TY - JOUR AU - A. E. Medvedev AU - A. D. Erokhin AU - Yu. M. Prikhod'ko AU - M. O. Zhulkov TI - Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 354 EP - 368 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/ LA - ru ID - MBB_2024_19_a13 ER -
%0 Journal Article %A A. E. Medvedev %A A. D. Erokhin %A Yu. M. Prikhod'ko %A M. O. Zhulkov %T Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 354-368 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/ %G ru %F MBB_2024_19_a13
A. E. Medvedev; A. D. Erokhin; Yu. M. Prikhod'ko; M. O. Zhulkov. Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 354-368. http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/
[1] M. O. Zhulkov, D. A. Sirota, Yu. M. Prikhodko, E. Kobelev, I. S. Zykov, A. R. Tarkova, A. E. Medvedev, A. G. Makaev, Kh. A. Agaeva, A. D. Limanskii, A. V. Protopopov, Ya. M. Smirnov, F. Yu. Kosimov, M. N. Murtazaliev, A. D. Erokhin, Transportnyi kuvez dlya provedeniya normotermicheskoi autoperfuzii donorskogo serdtsa, Patent na poleznuyu model 221731 U1, 21.11.2023. Zayavka # 2023124571 ot 25.09.2023
[2] M. O. Zhulkov, I. S. Zykov, D. A. Sirota, Kh. A. Agaeva, A. K. Sabetov, O. V. Poveschenko, S. Sh. Bozorov, A. V. Fomichev, A. M. Chernyavskii, “Sposob dlitelnogo konditsionirovaniya donorskogo serdtsa metodom autoperfuzii”, Vestnik eksperimentalnoi i klinicheskoi khirurgii, 15:3 (2022), 214–220 <ext-link ext-link-type='doi' href='https://doi.org/10.18499/2070-478X-2022-15-3-214-220'>10.18499/2070-478X-2022-15-3-214-220</ext-link>
[3] M. O. Zhulkov, A. R. Tarkova, I. S. Zykov, A. G. Makaev, A. V. Protopopov, M. N. Murtazaliev, F. Yu. Kosimov, N. A. Karmadonova, Ya. M. Smirnov, E. E. Kliver, A. M. Volkov, Kh. A. Agaeva, D. A. Sirota, “Dlitelnaya normotermicheskaya autoperfuziya serdechno-legochnogo kompleksa ex vivo kak metod effektivnogo konditsionirovaniya transplantata: eksperimentalnoe issledovanie”, Patologiya krovoobrascheniya i kardiokhirurgiya, 27:4 (2023), 33–42 <ext-link ext-link-type='doi' href='https://doi.org/10.21688/1681-3472-2023-4-33-42'>10.21688/1681-3472-2023-4-33-42</ext-link>
[4] R. Pinnelas, J. A. Kobashigawa, “Ex vivo Normothermic Perfusion in Heart Transplantation: A Review of the TransMedicsR Organ Care System”, Future Cardiology, 18:1 (2021), 5–15 <ext-link ext-link-type='doi' href='https://doi.org/10.2217/fca-2021-0030'>10.2217/fca-2021-0030</ext-link>
[5] M. O. Zhulkov, I. S. Zykov, A. G. Makaev, A. V. Protopopov, M. N. Murtazaliev, F. Yu. Kosimov, A. R. Tarkova, A. D. Limanskii, Ya. M. Smirnov, Kh. A. Agaeva, O. E. Frykina, D. A. Sirota, “Khirurgicheskaya tekhnika eksplantatsii rabotayuschego serdechno-legochnogo kompleksa v eksperimente”, Vestnik transplantologii i iskusstvennykh organov, 25:3 (2023), 122–128 <ext-link ext-link-type='doi' href='https://doi.org/10.15825/1995-1191-2023-3-122-128'>10.15825/1995-1191-2023-3-122-128</ext-link>
[6] A. E. Medvedev, A. D. Erokhin, “Matematicheskii analiz deformatsii aorty pri anevrizme i rassloenii stenok”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 464–478 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.464'>10.17537/2023.18.464</ext-link>
[7] A. E. Medvedev, A. D. Erokhin, “Modelirovanie deformatsii aorty pri anevrizme i rassloenii stenok”, Chelyabinskii fiziko-matematicheskii zhurnal, 9:2 (2024), 255–260 <ext-link ext-link-type='doi' href='https://doi.org/10.47475/2500-0101-2024-9-2-255-260'>10.47475/2500-0101-2024-9-2-255-260</ext-link>
[8] S. S. Simakov, “Sovremennye metody matematicheskogo modelirovaniya krovotoka s pomoschyu osrednennykh modelei”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 581–604 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2018-10-5-581-604'>10.20537/2076-7633-2018-10-5-581-604</ext-link>
[9] M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, “Matematicheskaya model gemodinamiki serdechno-sosudistoi sistemy”, Differentsialnye uravneniya, 33:7 (1997), 892–898 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1615495'>1615495</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0928.65133'>0928.65133</ext-link>
[10] V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, Matematicheskie modeli kvazi-odnomernoi gemodinamiki, Metodicheskoe posobie, MAKS Press, M., 2010, 114 pp.
[11] Fernandez de Canete J., Cuesta D., Luque A., Barbancho J., “Physical modelling and computer simulation of the cardiorespiratory system based on the use of a combined electrical analogy”, Mathematical and Computer Modelling of Dynamical Systems, 27:1 (2021), 453–488 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/13873954.2021.1977335'>10.1080/13873954.2021.1977335</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4329014'>4329014</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1486.92031'>1486.92031</ext-link>
[12] O.M. Belotserkovskii, A. S. Kholodov (red.), Kompyuternye modeli i progress meditsiny, Nauka, M., 2001, 300 pp.
[13] A. Quarteroni, L. Formaggia, A. Veneziani, Complex Systems in Biomedicine, Springer-Verlag, Milano, Italia, 2006, 292 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2488003'>2488003</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1169.92031'>1169.92031</ext-link>
[14] N. Westerhof, F. Bosman, C. J. De Vries, A. Noordergraaf, “Analog studies of the human systemic arterial tree”, Journal of Biomechanics, 2:2 (1969), 121–143 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0021-9290(69)90024-4'>10.1016/0021-9290(69)90024-4</ext-link>
[15] F. E. Cellier, A. Nebot, “Object-oriented modeling in the service of medicine”, Proceeding 6th Asia simulation conference, 2005, 33–40
[16] C. Scholzel, A. Goesmann, G. Ernst, A. Dominik, “Modeling Biology in Modelica: The Human Baroreflex”, Proceedings of the 11th International Modelica Conference, 118:9 (2015), 367–376 <ext-link ext-link-type='doi' href='https://doi.org/10.3384/ecp15118367'>10.3384/ecp15118367</ext-link>
[17] J. Kofranek, F. Jezek, M. Matejak, “Modelica language a promising tool for publishing and sharing biomedical models”, Proceedings of the 1st American Modelica Conference, 154:2 (2019), 196–205 <ext-link ext-link-type='doi' href='https://doi.org/10.3384/ECP18154196'>10.3384/ECP18154196</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4463542'>4463542</ext-link>
[18] P. Fritzson, P. Bunus, “Introduction to Object-Oriented Modeling and Simulation with OpenModelica”, The Proceedings of 5th International Modelica Conference, 2006, 139 pp.
[19] P. Fritzson, Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica, Wiley-IEE Press, 2012, 207 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1002/9781118094259'>10.1002/9781118094259</ext-link>
[20] J. Duhe, S. Victor, P. Melchior, Y. Abdelmounen, F. Roubertie, “Two-port network modeling for bio-heat transfers in lungs”, IFAC-PapersOnLine, 54:15 (2021), 169–174 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ifacol.2021.10.250'>10.1016/j.ifacol.2021.10.250</ext-link>
[21] M. Y. Mamatyukov, A. K. Khe, D. V. Parshin, P. I. Plotnikov, A. P. Chupakhin, “On the Energy of a Hydroelastic System: Blood Flow in an Artery with a Cerebral Aneurysm”, Journal of Applied Mechanics and Technical Physics, 60:6 (2019), 977–988 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0021894419060014'>10.1134/S0021894419060014</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4063101'>4063101</ext-link>