Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 354-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the development of computer modeling of hemodynamic systems, which helps to better understand physiology and to move from real experiments to simulation models. Using the object-oriented environment Modelica, an accurate model of the system “heart + lungs” was created. The performed numerical simulation confirmed the adequacy of the model and its applicability for more complex haemodynamic studies. Mathematical modeling of the “heart + lungs” system was carried out to create a digital twin. The main requirements to the model: reproduction of experimental data on animals and prediction of results in a wide range of parameters. The Modelica environment was used to create a circulatory model based on the quasi one-dimensional approximation. The modelling confirmed the adequacy of the digital twin for the key parameters of pressure and heart rate. The simulation results of two experiments showed good agreement with real data, which confirms the applicability of the model for complex haemodynamic problems.
@article{MBB_2024_19_a13,
     author = {A. E. Medvedev and A. D. Erokhin and Yu. M. Prikhod'ko and M. O. Zhulkov},
     title = {Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {354--368},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - A. D. Erokhin
AU  - Yu. M. Prikhod'ko
AU  - M. O. Zhulkov
TI  - Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 354
EP  - 368
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/
LA  - ru
ID  - MBB_2024_19_a13
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A A. D. Erokhin
%A Yu. M. Prikhod'ko
%A M. O. Zhulkov
%T Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 354-368
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/
%G ru
%F MBB_2024_19_a13
A. E. Medvedev; A. D. Erokhin; Yu. M. Prikhod'ko; M. O. Zhulkov. Modeling the dynamics of blood circulation in the autonomous cardiopulmonary complex. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 354-368. http://geodesic.mathdoc.fr/item/MBB_2024_19_a13/

[1] M. O. Zhulkov, D. A. Sirota, Yu. M. Prikhodko, E. Kobelev, I. S. Zykov, A. R. Tarkova, A. E. Medvedev, A. G. Makaev, Kh. A. Agaeva, A. D. Limanskii, A. V. Protopopov, Ya. M. Smirnov, F. Yu. Kosimov, M. N. Murtazaliev, A. D. Erokhin, Transportnyi kuvez dlya provedeniya normotermicheskoi autoperfuzii donorskogo serdtsa, Patent na poleznuyu model 221731 U1, 21.11.2023. Zayavka # 2023124571 ot 25.09.2023

[2] M. O. Zhulkov, I. S. Zykov, D. A. Sirota, Kh. A. Agaeva, A. K. Sabetov, O. V. Poveschenko, S. Sh. Bozorov, A. V. Fomichev, A. M. Chernyavskii, “Sposob dlitelnogo konditsionirovaniya donorskogo serdtsa metodom autoperfuzii”, Vestnik eksperimentalnoi i klinicheskoi khirurgii, 15:3 (2022), 214–220 <ext-link ext-link-type='doi' href='https://doi.org/10.18499/2070-478X-2022-15-3-214-220'>10.18499/2070-478X-2022-15-3-214-220</ext-link>

[3] M. O. Zhulkov, A. R. Tarkova, I. S. Zykov, A. G. Makaev, A. V. Protopopov, M. N. Murtazaliev, F. Yu. Kosimov, N. A. Karmadonova, Ya. M. Smirnov, E. E. Kliver, A. M. Volkov, Kh. A. Agaeva, D. A. Sirota, “Dlitelnaya normotermicheskaya autoperfuziya serdechno-legochnogo kompleksa ex vivo kak metod effektivnogo konditsionirovaniya transplantata: eksperimentalnoe issledovanie”, Patologiya krovoobrascheniya i kardiokhirurgiya, 27:4 (2023), 33–42 <ext-link ext-link-type='doi' href='https://doi.org/10.21688/1681-3472-2023-4-33-42'>10.21688/1681-3472-2023-4-33-42</ext-link>

[4] R. Pinnelas, J. A. Kobashigawa, “Ex vivo Normothermic Perfusion in Heart Transplantation: A Review of the TransMedicsR Organ Care System”, Future Cardiology, 18:1 (2021), 5–15 <ext-link ext-link-type='doi' href='https://doi.org/10.2217/fca-2021-0030'>10.2217/fca-2021-0030</ext-link>

[5] M. O. Zhulkov, I. S. Zykov, A. G. Makaev, A. V. Protopopov, M. N. Murtazaliev, F. Yu. Kosimov, A. R. Tarkova, A. D. Limanskii, Ya. M. Smirnov, Kh. A. Agaeva, O. E. Frykina, D. A. Sirota, “Khirurgicheskaya tekhnika eksplantatsii rabotayuschego serdechno-legochnogo kompleksa v eksperimente”, Vestnik transplantologii i iskusstvennykh organov, 25:3 (2023), 122–128 <ext-link ext-link-type='doi' href='https://doi.org/10.15825/1995-1191-2023-3-122-128'>10.15825/1995-1191-2023-3-122-128</ext-link>

[6] A. E. Medvedev, A. D. Erokhin, “Matematicheskii analiz deformatsii aorty pri anevrizme i rassloenii stenok”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 464–478 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2023.18.464'>10.17537/2023.18.464</ext-link>

[7] A. E. Medvedev, A. D. Erokhin, “Modelirovanie deformatsii aorty pri anevrizme i rassloenii stenok”, Chelyabinskii fiziko-matematicheskii zhurnal, 9:2 (2024), 255–260 <ext-link ext-link-type='doi' href='https://doi.org/10.47475/2500-0101-2024-9-2-255-260'>10.47475/2500-0101-2024-9-2-255-260</ext-link>

[8] S. S. Simakov, “Sovremennye metody matematicheskogo modelirovaniya krovotoka s pomoschyu osrednennykh modelei”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 581–604 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2018-10-5-581-604'>10.20537/2076-7633-2018-10-5-581-604</ext-link>

[9] M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, “Matematicheskaya model gemodinamiki serdechno-sosudistoi sistemy”, Differentsialnye uravneniya, 33:7 (1997), 892–898 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1615495'>1615495</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0928.65133'>0928.65133</ext-link>

[10] V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, Matematicheskie modeli kvazi-odnomernoi gemodinamiki, Metodicheskoe posobie, MAKS Press, M., 2010, 114 pp.

[11] Fernandez de Canete J., Cuesta D., Luque A., Barbancho J., “Physical modelling and computer simulation of the cardiorespiratory system based on the use of a combined electrical analogy”, Mathematical and Computer Modelling of Dynamical Systems, 27:1 (2021), 453–488 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/13873954.2021.1977335'>10.1080/13873954.2021.1977335</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4329014'>4329014</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1486.92031'>1486.92031</ext-link>

[12] O.M. Belotserkovskii, A. S. Kholodov (red.), Kompyuternye modeli i progress meditsiny, Nauka, M., 2001, 300 pp.

[13] A. Quarteroni, L. Formaggia, A. Veneziani, Complex Systems in Biomedicine, Springer-Verlag, Milano, Italia, 2006, 292 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2488003'>2488003</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1169.92031'>1169.92031</ext-link>

[14] N. Westerhof, F. Bosman, C. J. De Vries, A. Noordergraaf, “Analog studies of the human systemic arterial tree”, Journal of Biomechanics, 2:2 (1969), 121–143 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0021-9290(69)90024-4'>10.1016/0021-9290(69)90024-4</ext-link>

[15] F. E. Cellier, A. Nebot, “Object-oriented modeling in the service of medicine”, Proceeding 6th Asia simulation conference, 2005, 33–40

[16] C. Scholzel, A. Goesmann, G. Ernst, A. Dominik, “Modeling Biology in Modelica: The Human Baroreflex”, Proceedings of the 11th International Modelica Conference, 118:9 (2015), 367–376 <ext-link ext-link-type='doi' href='https://doi.org/10.3384/ecp15118367'>10.3384/ecp15118367</ext-link>

[17] J. Kofranek, F. Jezek, M. Matejak, “Modelica language a promising tool for publishing and sharing biomedical models”, Proceedings of the 1st American Modelica Conference, 154:2 (2019), 196–205 <ext-link ext-link-type='doi' href='https://doi.org/10.3384/ECP18154196'>10.3384/ECP18154196</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4463542'>4463542</ext-link>

[18] P. Fritzson, P. Bunus, “Introduction to Object-Oriented Modeling and Simulation with OpenModelica”, The Proceedings of 5th International Modelica Conference, 2006, 139 pp.

[19] P. Fritzson, Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica, Wiley-IEE Press, 2012, 207 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1002/9781118094259'>10.1002/9781118094259</ext-link>

[20] J. Duhe, S. Victor, P. Melchior, Y. Abdelmounen, F. Roubertie, “Two-port network modeling for bio-heat transfers in lungs”, IFAC-PapersOnLine, 54:15 (2021), 169–174 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ifacol.2021.10.250'>10.1016/j.ifacol.2021.10.250</ext-link>

[21] M. Y. Mamatyukov, A. K. Khe, D. V. Parshin, P. I. Plotnikov, A. P. Chupakhin, “On the Energy of a Hydroelastic System: Blood Flow in an Artery with a Cerebral Aneurysm”, Journal of Applied Mechanics and Technical Physics, 60:6 (2019), 977–988 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0021894419060014'>10.1134/S0021894419060014</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4063101'>4063101</ext-link>