Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 276-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various intrinsic and extrinsic factors, including genetic changes and environmental factors, have been reported to contribute to tumor recurrence. However, insufficient information about the significantly dysregulated genes and pathways responsible for cancer recurrence, even after surgical removal of tumors and chemotherapy. The aim of this research is to find out the fundamental genes linked with progression of cancer that may play a critical role in breast cancer recurrence. To achieve this, a microarray dataset of Affymetrix Human Genome U133 Plus 2.0 Array platform was used to identify downregulated and upregulated genes that associated with tumor recurrence in post-surgery patients. The study includes 20 specimen, 10 samples extracted at the time of diagnosis and 10 samples taken 30 minutes post-surgery and chemotherapy. Genes that stand out from the rest in their level of expression were further subjected to subsequent functional enrichment analysis and hub genes identification to pinpoint the key genes associated with recurrence. Results revealed that significantly overexpressed genes were found to be enriched in cancer progression-associated signaling pathways, for example, Wnt pathway and proteoglycans in cancer. Moreover, the identified key hub genes (COL1A1, IGF1, COL1A2, DCN, LUM, MMP2, JUN, CXCL12, THBS2, and LOX) majorly found to play a role in gene expression regulation, dysregulated immune system, epithelial-to-mesenchymal transition, and extracellular matrix remodeling thus promoting the development of cancer and increasing the chances of recurrence after surgery and chemotherapy. The findings have uncovered key therapeutic targets associated with tumor recurrence through potential ECM-related genes whose overexpression may significantly contribute to tumorigenesis in breast cancer survivors by epithelial-to-mesenchymal transition and targeting them may improve the chances of better survival breast cancer patients and increase the quality of life by reducing the chances of recurrence. However, the study is solely bioinformatics-based; therefore, future study will be experimental validations to bring forth these key genes as potential therapeutic targets.
@article{MBB_2024_19_a1,
     author = {Hamad Ali Hamad and Hammad Khalaf Saeed and Talib Hammad Hussein and Abdalwahab Bdewi Hussain and Nur Fariesha Md Hashim},
     title = {Unveiling potential therapeutic targets for breast cancer recurrence: {Differentially} expressed genes and pathways in post-surgery patients},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {276--292},
     publisher = {mathdoc},
     volume = {19},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/}
}
TY  - JOUR
AU  - Hamad Ali Hamad
AU  - Hammad Khalaf Saeed
AU  - Talib Hammad Hussein
AU  - Abdalwahab Bdewi Hussain
AU  - Nur Fariesha Md Hashim
TI  - Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 276
EP  - 292
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/
LA  - en
ID  - MBB_2024_19_a1
ER  - 
%0 Journal Article
%A Hamad Ali Hamad
%A Hammad Khalaf Saeed
%A Talib Hammad Hussein
%A Abdalwahab Bdewi Hussain
%A Nur Fariesha Md Hashim
%T Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 276-292
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/
%G en
%F MBB_2024_19_a1
Hamad Ali Hamad; Hammad Khalaf Saeed; Talib Hammad Hussein; Abdalwahab Bdewi Hussain; Nur Fariesha Md Hashim. Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 276-292. http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/

[1] U. Anayyat, F. Ahad, T. A. Muluh, S. A.A. Zaidi, F. Usmani, H. Yang, M. Li, H. A. Hassan, X. Wang, “Immunotherapy: Constructive Approach for Breast Cancer Treatment”, Breast Cancer: Targets and Therapy, 15 (2023), 925–951 <ext-link ext-link-type='doi' href='https://doi.org/10.2147/BCTT.S424624'>10.2147/BCTT.S424624</ext-link>

[2] Z. Momenimovahed, H. Salehiniya, “Epidemiological characteristics of and risk factors for breast cancer in the world”, Breast Cancer: Targets and Therapy, 11 (2019), 151–164 <ext-link ext-link-type='doi' href='https://doi.org/10.2147/BCTT.S176070'>10.2147/BCTT.S176070</ext-link>

[3] B. Pasculli, R. Barbano, P. Parrella, “Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine”, Semin. Cancer Biol, 51 (2018), 22–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.semcancer.2018.01.007'>10.1016/j.semcancer.2018.01.007</ext-link>

[4] M. M. Rahman, A. C. Brane, T. O. Tollefsbol, “MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer”, Cells, 8 (2019), 1214 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cells8101214'>10.3390/cells8101214</ext-link>

[5] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, A. Jemal, “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: Cancer J. Clin, 74:3 (2024), 229–263 <ext-link ext-link-type='doi' href='https://doi.org/10.3322/caac.21834'>10.3322/caac.21834</ext-link>

[6] M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, J. Vignat, J. R. Gralow, F. Cardoso, S. Siesling et al, “Current and future burden of breast cancer: Global statistics 2020 and 2040”, The Breast, 66 (2022), 15–23 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2022.08.010'>10.1016/j.breast.2022.08.010</ext-link>

[7] K. T. Hwang, J. Kim, J. Jung, J. H. Chang, Y. J. Chai, S. W. Oh, S. Oh, Y. A. Kim, S. B. Park, K. R. Hwang, “Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: A population-based study using SEER database”, Clin. Cancer Res, 25:6 (2019), 1970–1979 <ext-link ext-link-type='doi' href='https://doi.org/10.1158/1078-0432.CCR-18-2782'>10.1158/1078-0432.CCR-18-2782</ext-link>

[8] J..Y. Tsang, M..T. Gary, “Molecular classification of breast cancer”, Advances in anatomic pathology, 1:27 (2020), 27–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1097/PAP.0000000000000232'>10.1097/PAP.0000000000000232</ext-link>

[9] A. Prat, E. Pineda, B. Adamo, P. Galvan, A. Fernandez, L. Gaba, M. Diez, M. Viladot, A. Arance, M. Munoz, “Clinical implications of the intrinsic molecular subtypes of breast cancer”, The Breast, 1:24 (2015), S26–S35 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2015.07.008'>10.1016/j.breast.2015.07.008</ext-link>

[10] M. Kaminska, T. Ciszewski, K. Lopacka-Szatan, P. Miotla, E. Staroslawska, “Breast cancer risk factors”, Menopause Rev, 14:3 (2015), 196–202 <ext-link ext-link-type='doi' href='https://doi.org/10.5114/pm.2015.54346'>10.5114/pm.2015.54346</ext-link>

[11] P. Zhao, N. Xia, H. Zhang, T. Deng, “The Metabolic Syndrome Is a Risk Factor for Breast Cancer: A Systematic Review and Meta-Analysis”, Obes. Facts, 13:4 (2020), 384–396 <ext-link ext-link-type='doi' href='https://doi.org/10.1159/000507554'>10.1159/000507554</ext-link>

[12] S. Azadnajafabad, S. S. Moghaddam, M. Keykhaei, P. Shobeiri, N. Rezaei, E. Ghasemi, E. Mohammadi, N. Ahmadi, A. Ghamari, S. Shahin et al, “Expansion of the quality of care index on breast cancer and its risk factors using the global burden of disease study 2019”, Cancer Med, 12:2 (2023), 1729–1743 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cam4.4951'>10.1002/cam4.4951</ext-link>

[13] H. J. Schunemann, D. Lerda, C. Quinn, M. Follmann, P. Alonso-Coello, P. G. Rossi, A. Lebeau, L. Nystrom, M. Broeders, L. Ioannidou-Mouzaka et al, “Breast cancer screening and diagnosis: A synopsis of the European Breast Guidelines”, Ann. Intern. Med, 172:1 (2020), 46–56 <ext-link ext-link-type='doi' href='https://doi.org/10.7326/M19-2125'>10.7326/M19-2125</ext-link>

[14] A.G. Waks, E.P. Winer, “Breast cancer treatment: A review”, JAMA, 321:3 (2019), 288–300 <ext-link ext-link-type='doi' href='https://doi.org/10.1001/jama.2018.19323'>10.1001/jama.2018.19323</ext-link>

[15] U. Bick, R. M. Trimboli, A. Athanasiou, C. Balleyguier, P. A. Baltzer, M. Bernathova, K. Borbely, B. Brkljacic, L. A. Carbonaro, P. Clauser et al, “Image-guided breast biopsy and localisation: Recommendations for information to women and referring physicians by the European Society of Breast Imaging”, Insights into Imaging, 11 (2020), 12 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13244-019-0803-x'>10.1186/s13244-019-0803-x</ext-link>

[16] J. Louro, M. Roman, M. Posso, L. Comerma, C. Vidal, F. Saladie, R. Alcantara, M. Sanchez, M. J. Quintana, J. Del Riego et al, “Differences in breast cancer risk after benign breast disease by type of screening diagnosis”, The Breast, 54:1 (2020), 343–348 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2020.09.005'>10.1016/j.breast.2020.09.005</ext-link>

[17] K. Tripathi, R. Yadav, S. K. Maurya, “A comparative study between fine-needle aspiration cytology and core needle biopsy in diagnosing clinically palpable breast lumps”, Cureus, 14 (2022), e27709 <ext-link ext-link-type='doi' href='https://doi.org/10.7759/cureus.27709'>10.7759/cureus.27709</ext-link>

[18] M. Riis, “Modern surgical treatment of breast cancer”, Ann. Med. Surg, 56 (2020), 95–107 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amsu.2020.06.016'>10.1016/j.amsu.2020.06.016</ext-link>

[19] O. Kaidar-Person, B. V. Offersen, L. J. Boersma, D. de Ruysscher, T. Tramm, T. Kuhn, O. Gentilini, Z. Matrai, P. Poortmans, “A multidisciplinary view of mastectomy and breast reconstruction: Understanding the challenges”, The Breast, 56 (2021), 42–52 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2021.02.004'>10.1016/j.breast.2021.02.004</ext-link>

[20] J. Labrosse, M. Osdoit, A. S. Hamy, F. Coussy, J. Y. Pierga, F. Reyal, E. Laas, “Adjuvant chemotherapy for breast cancer after preoperative chemotherapy: A propensity score matched analysis”, PLoS ONE, 15:6 (2020), e0234173 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0234173'>10.1371/journal.pone.0234173</ext-link>

[21] Buzdar A.U., “Preoperative chemotherapy treatment of breast cancer-a review”, Cancer: Interdisciplinary International Journal of the American Cancer Society, 110:11 (2007), 2394–2407 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cncr.23083'>10.1002/cncr.23083</ext-link>

[22] X. Chen, L. Liu, Y. Wang, B. Liu, D. Zeng, Q. Jin, M. Li, D. Zhang, Q. Liu, H. Xie, “Identification of breast cancer recurrence risk factors based on functional pathways in tumor normal tissues”, Oncotarget, 8:13 (2016), 20679–20694 <ext-link ext-link-type='doi' href='https://doi.org/10.18632/oncotarget.11557'>10.18632/oncotarget.11557</ext-link>

[23] O. M. Rueda, S. J. Sammut, J. A. Seoane, S. F. Chin, J. L. Caswell-Jin, M. Callari, R. Batra, B. Pereira, A. Bruna, H. R. Ali et al, “Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups”, Nature, 567:7748 (2019), 399–404 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-019-1007-8'>10.1038/s41586-019-1007-8</ext-link>

[24] A. Ordaz-Ramos, O. Tellez-Jimenez, K. Vazquez-Santillan, “Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications”, Front. Cell Dev. Biol, 11 (2023), 1221175 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2023.1221175'>10.3389/fcell.2023.1221175</ext-link>

[25] H. A. Hamad, B. Gopalsamy, C. Y. Kqueen, N. F.M. Hashim, “Potential Ability of Phytochemical in Inhibition of Invadopodia Formation and HIF-1$\alpha$ in Cancer Metastasis”, Malaysian Journal of Medicine & Health Sciences, 15 (2019), 71–80

[26] A. H.N. Kamdje, P. F.S. Etet, L. Vecchio, J. M. Muller, M. Krampera, K. E. Lukong, “Signaling pathways in breast cancer: therapeutic targeting of the microenvironment”, Cell Signal, 26:12 (2014), 2843–2856 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cellsig.2014.07.034'>10.1016/j.cellsig.2014.07.034</ext-link>

[27] A. Ahmad, “Pathways to breast cancer recurrence”, International Scholarly Research Notices, 2013:1 (2013), 290568 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2013/290568'>10.1155/2013/290568</ext-link>

[28] F.A. Jabbar, R. AlChalabi, A.Y. AL-Tarboolee, S.A. Shaban, A.A. Suleiman, “Alternative Splicing in Pancreatic Ductal Adenocarcinoma Leads to Dysregulated Immune System”, Mathematical Biology and Bioinformatics, 19:1 (2024), 15–35 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2024.19.15'>10.17537/2024.19.15</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4710567'>4710567</ext-link>

[29] S. Alaimo, A. Di Maria, D. Shasha, A. Ferro, A. Pulvirenti, “TACITuS: transcriptomic data collector, integrator, and selector on big data platform”, BMC Bioinformatics, 20:9 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12859-019-2912-4'>10.1186/s12859-019-2912-4</ext-link>

[30] A. Garcia-Moreno, R. Lopez-Dominguez, J. A. Villatoro-Garcia, A. Ramirez-Mena, E. Aparicio-Puerta, M. Hackenberg, A. Pascual-Montano, P. Carmona-Saez, “Functional Enrichment Analysis of Regulatory Elements”, Biomedicines, 10 (2022), 590 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/biomedicines10030590'>10.3390/biomedicines10030590</ext-link>

[31] D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N. T. Doncheva, Pyysalo S. et al, “The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest”, Nucleic Acids Res., 51:D1 (2023), D638-D646 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkac1000'>10.1093/nar/gkac1000</ext-link>

[32] A. I. Riggio, K. E. Varley, A. L. Welm, “The lingering mysteries of metastatic recurrence in breast cancer”, Br. J. Cancer, 124 (2021), 13–26 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41416-020-01161-4'>10.1038/s41416-020-01161-4</ext-link>

[33] R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, S. Kolahian, T. Javaheri, P. Zare, “Tumor microenvironment complexity and therapeutic implications at a glance”, Cell Commun. Signal, 18:1 (2020), 59 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12964-020-0530-4'>10.1186/s12964-020-0530-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4091001'>4091001</ext-link>

[34] K. Khalaf, D. Hana, J. T.T. Chou, C. Singh, A. Mackiewicz, M. Kaczmarek, “Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance”, Front. Immunol, 12 (2021), 656364 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fimmu.2021.656364'>10.3389/fimmu.2021.656364</ext-link>

[35] M. D. Mares-Quinones, E. Galan-Vasquez, E. Perez-Rueda, D. G. Perez-Ishiwara, M. O. Medel Flores, M. D.C. Gomez-Garcia, “Identification of modules and key genes associated with breast cancer subtypes through network analysis”, Sci. Rep, 14 (2024), 12350 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-024-61908-4'>10.1038/s41598-024-61908-4</ext-link>

[36] Y. Jiang, F. Chen, X. Ren, Y. Yang, J. Luo, J. Yuan, J. Yuan, Q. Tong, “RNA-Binding Protein COL14A1, TNS1, NUSAP1 and YWHAE Are Valid Biomarkers to Predict Peritoneal Metastasis in Gastric Cancer”, Front. Oncol, 12 (2022), 830688 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fonc.2022.830688'>10.3389/fonc.2022.830688</ext-link>

[37] Z. H. Wu, Y. J. Zhang, J. X. Yue, T. Zhou, “Comprehensive Analysis of the Expression and Prognosis for SFRPs in Breast Carcinoma”, Cell Transplant, 2020, 29 <ext-link ext-link-type='doi' href='https://doi.org/10.1177/0963689720962479'>10.1177/0963689720962479</ext-link>

[38] R. D. Motrich, G. M. Castro, Caputto B. L., “Old Players with a Newly Defined Function: Fra 1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm”, PLoS ONE, 8:1 (2013), e53211 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0053211'>10.1371/journal.pone.0053211</ext-link>

[39] J. Nulali, M. Zhan, K. Zhang, P. Tu, Y. Liu, H. Song, “Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis”, Biomolecules, 12:11 (2022), 1674 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/biom12111674'>10.3390/biom12111674</ext-link>

[40] H. Bae, B. Kim, H. Lee, S. Lee, H. S. Kang, S. J. Kim, “Epigenetically regulated Fibronectin leucine rich transmembrane protein 2 (FLRT2) shows tumor suppressor activity in breast cancer cells”, Sci. Rep, 7 (2017), 272 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-017-00424-0'>10.1038/s41598-017-00424-0</ext-link>

[41] K. A. Ahmed, T. A. Hasib, S. K. Paul, M. Saddam, A. Mimi, A. S.M. Saikat, H. A. Faruque, M. A. Rahman, M. J. Uddin, Kim, B., “Potential Role of CCN Proteins in Breast Cancer: Therapeutic Advances and Perspectives”, Curr. Oncol, 28:6 (2021), 4972–4985 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/curroncol28060417'>10.3390/curroncol28060417</ext-link>

[42] K. Harikrishnan, O. Joshi, S. Madangirikar, N. Balasubramanian, “Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells”, Front. Cell Dev. Biol, 8 (2020), 522 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2020.00522'>10.3389/fcell.2020.00522</ext-link>

[43] N. L. Shan, A. Minden, P. Furmanski, M. J. Bak, L. Cai, R. Wernyj, D. Sargsyan, D. Cheng, R. Wu, H. C.D. Kuo et al, “Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds”, Cancer Prev. Res, 13 (2020), 673–686 <ext-link ext-link-type='doi' href='https://doi.org/10.1158/1940-6207.CAPR-19-0566'>10.1158/1940-6207.CAPR-19-0566</ext-link>

[44] G. Pei, Y. Lan, W. Lu, L. Ji, Z. C. Hua, “The function of FAK/CCDC80/E-cadherin pathway in the regulation of B16F10 cell migration”, Oncol. Lett, 16:4 (2018), 4761–4767 <ext-link ext-link-type='doi' href='https://doi.org/10.3892/ol.2018.9159'>10.3892/ol.2018.9159</ext-link>

[45] D. Miricescu, A. Totan, I. I. Stanescu-Spinu, S. C. Badoiu, C. Stefani, M. Greabu, “PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects”, Int. J. Mol. Sci, 22 (2021), 173 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms22010173'>10.3390/ijms22010173</ext-link>

[46] W. A. Abreu de Oliveira, Y. El Laithy, A. Bruna, D. Annibali, F. Lluis, “Wnt Signaling in the Breast: From Development to Disease”, Front. Cell Dev. Biol, 10 (2022), 884467 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2022.884467'>10.3389/fcell.2022.884467</ext-link>

[47] M. You, Z. Xie, N. Zhang, Y. Zhang, D. Xiao, S. Liu, W. Zhuang, L. Li, Y. Tao, “Signaling pathways in cancer metabolism: mechanisms and therapeutic targets”, Signal Transduct. Target. Ther, 8 (2023), 196 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41392-023-01442-3'>10.1038/s41392-023-01442-3</ext-link>

[48] H. A. Hamad, H. H. Enezei, A. Alrawas, N. M. Zakuan, N. A. Abdullah, Y. K. Cheah, N. F.M. Hashim, “Identification of Potential Chemical Substrates as Fuel for Hypoxic Tumors That May Be Linked to Invadopodium Formation in Hypoxia-Induced MDA-MB-231 Breast Cancer Cell Line”, Molecules, 25:17 (2020), 3876 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/molecules25173876'>10.3390/molecules25173876</ext-link>

[49] N. V. Popova, M. Jucker, “The Functional Role of Extracellular Matrix Proteins in Cancer”, Cancers, 14:1 (2022), 238 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cancers14010238'>10.3390/cancers14010238</ext-link>

[50] W. Wang, X. Wang, F. Yao, C. Huang, “Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer”, Int. J. Mol. Sci, 23:20 (2022), 12270 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms232012270'>10.3390/ijms232012270</ext-link>

[51] M. Meysami, M. Rahaie, A. Ebrahimi, F. Samiee, “Four Matrix Metalloproteinase genes involved in murine breast cancer affected by ginger extract”, Gene Rep, 25 (2021), 101332 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.genrep.2021.101332'>10.1016/j.genrep.2021.101332</ext-link>

[52] Y. Jiang, B. Wang, J. K. Li, S. Y. Li, R. L. Niu, N. Q. Fu, J. J. Zheng, G. Liu, Z. L. Wang, Collagen fiber features and COL1A1: are they associated with elastic parameters in breast lesions, and can COL1A1 predict axillary lymph node metastasis?, BMC Cancer, 22:1 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12885-022-10092-7'>10.1186/s12885-022-10092-7</ext-link>

[53] X. Li, X. Sun, C. Kan, B. Chen, N. Qu, N. Hou, Y. Liu, F. Han, “COL1A1: A novel oncogenic gene and therapeutic target in malignancies”, Pathol. Res. Pract, 236 (2022), 154013 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.prp.2022.154013'>10.1016/j.prp.2022.154013</ext-link>