Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_a1, author = {Hamad Ali Hamad and Hammad Khalaf Saeed and Talib Hammad Hussein and Abdalwahab Bdewi Hussain and Nur Fariesha Md Hashim}, title = {Unveiling potential therapeutic targets for breast cancer recurrence: {Differentially} expressed genes and pathways in post-surgery patients}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {276--292}, publisher = {mathdoc}, volume = {19}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/} }
TY - JOUR AU - Hamad Ali Hamad AU - Hammad Khalaf Saeed AU - Talib Hammad Hussein AU - Abdalwahab Bdewi Hussain AU - Nur Fariesha Md Hashim TI - Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 276 EP - 292 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/ LA - en ID - MBB_2024_19_a1 ER -
%0 Journal Article %A Hamad Ali Hamad %A Hammad Khalaf Saeed %A Talib Hammad Hussein %A Abdalwahab Bdewi Hussain %A Nur Fariesha Md Hashim %T Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 276-292 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/ %G en %F MBB_2024_19_a1
Hamad Ali Hamad; Hammad Khalaf Saeed; Talib Hammad Hussein; Abdalwahab Bdewi Hussain; Nur Fariesha Md Hashim. Unveiling potential therapeutic targets for breast cancer recurrence: Differentially expressed genes and pathways in post-surgery patients. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024), pp. 276-292. http://geodesic.mathdoc.fr/item/MBB_2024_19_a1/
[1] U. Anayyat, F. Ahad, T. A. Muluh, S. A.A. Zaidi, F. Usmani, H. Yang, M. Li, H. A. Hassan, X. Wang, “Immunotherapy: Constructive Approach for Breast Cancer Treatment”, Breast Cancer: Targets and Therapy, 15 (2023), 925–951 <ext-link ext-link-type='doi' href='https://doi.org/10.2147/BCTT.S424624'>10.2147/BCTT.S424624</ext-link>
[2] Z. Momenimovahed, H. Salehiniya, “Epidemiological characteristics of and risk factors for breast cancer in the world”, Breast Cancer: Targets and Therapy, 11 (2019), 151–164 <ext-link ext-link-type='doi' href='https://doi.org/10.2147/BCTT.S176070'>10.2147/BCTT.S176070</ext-link>
[3] B. Pasculli, R. Barbano, P. Parrella, “Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine”, Semin. Cancer Biol, 51 (2018), 22–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.semcancer.2018.01.007'>10.1016/j.semcancer.2018.01.007</ext-link>
[4] M. M. Rahman, A. C. Brane, T. O. Tollefsbol, “MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer”, Cells, 8 (2019), 1214 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cells8101214'>10.3390/cells8101214</ext-link>
[5] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, A. Jemal, “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: Cancer J. Clin, 74:3 (2024), 229–263 <ext-link ext-link-type='doi' href='https://doi.org/10.3322/caac.21834'>10.3322/caac.21834</ext-link>
[6] M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, J. Vignat, J. R. Gralow, F. Cardoso, S. Siesling et al, “Current and future burden of breast cancer: Global statistics 2020 and 2040”, The Breast, 66 (2022), 15–23 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2022.08.010'>10.1016/j.breast.2022.08.010</ext-link>
[7] K. T. Hwang, J. Kim, J. Jung, J. H. Chang, Y. J. Chai, S. W. Oh, S. Oh, Y. A. Kim, S. B. Park, K. R. Hwang, “Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: A population-based study using SEER database”, Clin. Cancer Res, 25:6 (2019), 1970–1979 <ext-link ext-link-type='doi' href='https://doi.org/10.1158/1078-0432.CCR-18-2782'>10.1158/1078-0432.CCR-18-2782</ext-link>
[8] J..Y. Tsang, M..T. Gary, “Molecular classification of breast cancer”, Advances in anatomic pathology, 1:27 (2020), 27–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1097/PAP.0000000000000232'>10.1097/PAP.0000000000000232</ext-link>
[9] A. Prat, E. Pineda, B. Adamo, P. Galvan, A. Fernandez, L. Gaba, M. Diez, M. Viladot, A. Arance, M. Munoz, “Clinical implications of the intrinsic molecular subtypes of breast cancer”, The Breast, 1:24 (2015), S26–S35 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2015.07.008'>10.1016/j.breast.2015.07.008</ext-link>
[10] M. Kaminska, T. Ciszewski, K. Lopacka-Szatan, P. Miotla, E. Staroslawska, “Breast cancer risk factors”, Menopause Rev, 14:3 (2015), 196–202 <ext-link ext-link-type='doi' href='https://doi.org/10.5114/pm.2015.54346'>10.5114/pm.2015.54346</ext-link>
[11] P. Zhao, N. Xia, H. Zhang, T. Deng, “The Metabolic Syndrome Is a Risk Factor for Breast Cancer: A Systematic Review and Meta-Analysis”, Obes. Facts, 13:4 (2020), 384–396 <ext-link ext-link-type='doi' href='https://doi.org/10.1159/000507554'>10.1159/000507554</ext-link>
[12] S. Azadnajafabad, S. S. Moghaddam, M. Keykhaei, P. Shobeiri, N. Rezaei, E. Ghasemi, E. Mohammadi, N. Ahmadi, A. Ghamari, S. Shahin et al, “Expansion of the quality of care index on breast cancer and its risk factors using the global burden of disease study 2019”, Cancer Med, 12:2 (2023), 1729–1743 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cam4.4951'>10.1002/cam4.4951</ext-link>
[13] H. J. Schunemann, D. Lerda, C. Quinn, M. Follmann, P. Alonso-Coello, P. G. Rossi, A. Lebeau, L. Nystrom, M. Broeders, L. Ioannidou-Mouzaka et al, “Breast cancer screening and diagnosis: A synopsis of the European Breast Guidelines”, Ann. Intern. Med, 172:1 (2020), 46–56 <ext-link ext-link-type='doi' href='https://doi.org/10.7326/M19-2125'>10.7326/M19-2125</ext-link>
[14] A.G. Waks, E.P. Winer, “Breast cancer treatment: A review”, JAMA, 321:3 (2019), 288–300 <ext-link ext-link-type='doi' href='https://doi.org/10.1001/jama.2018.19323'>10.1001/jama.2018.19323</ext-link>
[15] U. Bick, R. M. Trimboli, A. Athanasiou, C. Balleyguier, P. A. Baltzer, M. Bernathova, K. Borbely, B. Brkljacic, L. A. Carbonaro, P. Clauser et al, “Image-guided breast biopsy and localisation: Recommendations for information to women and referring physicians by the European Society of Breast Imaging”, Insights into Imaging, 11 (2020), 12 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13244-019-0803-x'>10.1186/s13244-019-0803-x</ext-link>
[16] J. Louro, M. Roman, M. Posso, L. Comerma, C. Vidal, F. Saladie, R. Alcantara, M. Sanchez, M. J. Quintana, J. Del Riego et al, “Differences in breast cancer risk after benign breast disease by type of screening diagnosis”, The Breast, 54:1 (2020), 343–348 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2020.09.005'>10.1016/j.breast.2020.09.005</ext-link>
[17] K. Tripathi, R. Yadav, S. K. Maurya, “A comparative study between fine-needle aspiration cytology and core needle biopsy in diagnosing clinically palpable breast lumps”, Cureus, 14 (2022), e27709 <ext-link ext-link-type='doi' href='https://doi.org/10.7759/cureus.27709'>10.7759/cureus.27709</ext-link>
[18] M. Riis, “Modern surgical treatment of breast cancer”, Ann. Med. Surg, 56 (2020), 95–107 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amsu.2020.06.016'>10.1016/j.amsu.2020.06.016</ext-link>
[19] O. Kaidar-Person, B. V. Offersen, L. J. Boersma, D. de Ruysscher, T. Tramm, T. Kuhn, O. Gentilini, Z. Matrai, P. Poortmans, “A multidisciplinary view of mastectomy and breast reconstruction: Understanding the challenges”, The Breast, 56 (2021), 42–52 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.breast.2021.02.004'>10.1016/j.breast.2021.02.004</ext-link>
[20] J. Labrosse, M. Osdoit, A. S. Hamy, F. Coussy, J. Y. Pierga, F. Reyal, E. Laas, “Adjuvant chemotherapy for breast cancer after preoperative chemotherapy: A propensity score matched analysis”, PLoS ONE, 15:6 (2020), e0234173 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0234173'>10.1371/journal.pone.0234173</ext-link>
[21] Buzdar A.U., “Preoperative chemotherapy treatment of breast cancer-a review”, Cancer: Interdisciplinary International Journal of the American Cancer Society, 110:11 (2007), 2394–2407 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cncr.23083'>10.1002/cncr.23083</ext-link>
[22] X. Chen, L. Liu, Y. Wang, B. Liu, D. Zeng, Q. Jin, M. Li, D. Zhang, Q. Liu, H. Xie, “Identification of breast cancer recurrence risk factors based on functional pathways in tumor normal tissues”, Oncotarget, 8:13 (2016), 20679–20694 <ext-link ext-link-type='doi' href='https://doi.org/10.18632/oncotarget.11557'>10.18632/oncotarget.11557</ext-link>
[23] O. M. Rueda, S. J. Sammut, J. A. Seoane, S. F. Chin, J. L. Caswell-Jin, M. Callari, R. Batra, B. Pereira, A. Bruna, H. R. Ali et al, “Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups”, Nature, 567:7748 (2019), 399–404 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41586-019-1007-8'>10.1038/s41586-019-1007-8</ext-link>
[24] A. Ordaz-Ramos, O. Tellez-Jimenez, K. Vazquez-Santillan, “Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications”, Front. Cell Dev. Biol, 11 (2023), 1221175 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2023.1221175'>10.3389/fcell.2023.1221175</ext-link>
[25] H. A. Hamad, B. Gopalsamy, C. Y. Kqueen, N. F.M. Hashim, “Potential Ability of Phytochemical in Inhibition of Invadopodia Formation and HIF-1$\alpha$ in Cancer Metastasis”, Malaysian Journal of Medicine & Health Sciences, 15 (2019), 71–80
[26] A. H.N. Kamdje, P. F.S. Etet, L. Vecchio, J. M. Muller, M. Krampera, K. E. Lukong, “Signaling pathways in breast cancer: therapeutic targeting of the microenvironment”, Cell Signal, 26:12 (2014), 2843–2856 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cellsig.2014.07.034'>10.1016/j.cellsig.2014.07.034</ext-link>
[27] A. Ahmad, “Pathways to breast cancer recurrence”, International Scholarly Research Notices, 2013:1 (2013), 290568 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2013/290568'>10.1155/2013/290568</ext-link>
[28] F.A. Jabbar, R. AlChalabi, A.Y. AL-Tarboolee, S.A. Shaban, A.A. Suleiman, “Alternative Splicing in Pancreatic Ductal Adenocarcinoma Leads to Dysregulated Immune System”, Mathematical Biology and Bioinformatics, 19:1 (2024), 15–35 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2024.19.15'>10.17537/2024.19.15</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4710567'>4710567</ext-link>
[29] S. Alaimo, A. Di Maria, D. Shasha, A. Ferro, A. Pulvirenti, “TACITuS: transcriptomic data collector, integrator, and selector on big data platform”, BMC Bioinformatics, 20:9 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12859-019-2912-4'>10.1186/s12859-019-2912-4</ext-link>
[30] A. Garcia-Moreno, R. Lopez-Dominguez, J. A. Villatoro-Garcia, A. Ramirez-Mena, E. Aparicio-Puerta, M. Hackenberg, A. Pascual-Montano, P. Carmona-Saez, “Functional Enrichment Analysis of Regulatory Elements”, Biomedicines, 10 (2022), 590 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/biomedicines10030590'>10.3390/biomedicines10030590</ext-link>
[31] D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N. T. Doncheva, Pyysalo S. et al, “The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest”, Nucleic Acids Res., 51:D1 (2023), D638-D646 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkac1000'>10.1093/nar/gkac1000</ext-link>
[32] A. I. Riggio, K. E. Varley, A. L. Welm, “The lingering mysteries of metastatic recurrence in breast cancer”, Br. J. Cancer, 124 (2021), 13–26 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41416-020-01161-4'>10.1038/s41416-020-01161-4</ext-link>
[33] R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, S. Kolahian, T. Javaheri, P. Zare, “Tumor microenvironment complexity and therapeutic implications at a glance”, Cell Commun. Signal, 18:1 (2020), 59 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12964-020-0530-4'>10.1186/s12964-020-0530-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4091001'>4091001</ext-link>
[34] K. Khalaf, D. Hana, J. T.T. Chou, C. Singh, A. Mackiewicz, M. Kaczmarek, “Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance”, Front. Immunol, 12 (2021), 656364 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fimmu.2021.656364'>10.3389/fimmu.2021.656364</ext-link>
[35] M. D. Mares-Quinones, E. Galan-Vasquez, E. Perez-Rueda, D. G. Perez-Ishiwara, M. O. Medel Flores, M. D.C. Gomez-Garcia, “Identification of modules and key genes associated with breast cancer subtypes through network analysis”, Sci. Rep, 14 (2024), 12350 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-024-61908-4'>10.1038/s41598-024-61908-4</ext-link>
[36] Y. Jiang, F. Chen, X. Ren, Y. Yang, J. Luo, J. Yuan, J. Yuan, Q. Tong, “RNA-Binding Protein COL14A1, TNS1, NUSAP1 and YWHAE Are Valid Biomarkers to Predict Peritoneal Metastasis in Gastric Cancer”, Front. Oncol, 12 (2022), 830688 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fonc.2022.830688'>10.3389/fonc.2022.830688</ext-link>
[37] Z. H. Wu, Y. J. Zhang, J. X. Yue, T. Zhou, “Comprehensive Analysis of the Expression and Prognosis for SFRPs in Breast Carcinoma”, Cell Transplant, 2020, 29 <ext-link ext-link-type='doi' href='https://doi.org/10.1177/0963689720962479'>10.1177/0963689720962479</ext-link>
[38] R. D. Motrich, G. M. Castro, Caputto B. L., “Old Players with a Newly Defined Function: Fra 1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm”, PLoS ONE, 8:1 (2013), e53211 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0053211'>10.1371/journal.pone.0053211</ext-link>
[39] J. Nulali, M. Zhan, K. Zhang, P. Tu, Y. Liu, H. Song, “Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis”, Biomolecules, 12:11 (2022), 1674 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/biom12111674'>10.3390/biom12111674</ext-link>
[40] H. Bae, B. Kim, H. Lee, S. Lee, H. S. Kang, S. J. Kim, “Epigenetically regulated Fibronectin leucine rich transmembrane protein 2 (FLRT2) shows tumor suppressor activity in breast cancer cells”, Sci. Rep, 7 (2017), 272 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-017-00424-0'>10.1038/s41598-017-00424-0</ext-link>
[41] K. A. Ahmed, T. A. Hasib, S. K. Paul, M. Saddam, A. Mimi, A. S.M. Saikat, H. A. Faruque, M. A. Rahman, M. J. Uddin, Kim, B., “Potential Role of CCN Proteins in Breast Cancer: Therapeutic Advances and Perspectives”, Curr. Oncol, 28:6 (2021), 4972–4985 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/curroncol28060417'>10.3390/curroncol28060417</ext-link>
[42] K. Harikrishnan, O. Joshi, S. Madangirikar, N. Balasubramanian, “Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells”, Front. Cell Dev. Biol, 8 (2020), 522 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2020.00522'>10.3389/fcell.2020.00522</ext-link>
[43] N. L. Shan, A. Minden, P. Furmanski, M. J. Bak, L. Cai, R. Wernyj, D. Sargsyan, D. Cheng, R. Wu, H. C.D. Kuo et al, “Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds”, Cancer Prev. Res, 13 (2020), 673–686 <ext-link ext-link-type='doi' href='https://doi.org/10.1158/1940-6207.CAPR-19-0566'>10.1158/1940-6207.CAPR-19-0566</ext-link>
[44] G. Pei, Y. Lan, W. Lu, L. Ji, Z. C. Hua, “The function of FAK/CCDC80/E-cadherin pathway in the regulation of B16F10 cell migration”, Oncol. Lett, 16:4 (2018), 4761–4767 <ext-link ext-link-type='doi' href='https://doi.org/10.3892/ol.2018.9159'>10.3892/ol.2018.9159</ext-link>
[45] D. Miricescu, A. Totan, I. I. Stanescu-Spinu, S. C. Badoiu, C. Stefani, M. Greabu, “PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects”, Int. J. Mol. Sci, 22 (2021), 173 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms22010173'>10.3390/ijms22010173</ext-link>
[46] W. A. Abreu de Oliveira, Y. El Laithy, A. Bruna, D. Annibali, F. Lluis, “Wnt Signaling in the Breast: From Development to Disease”, Front. Cell Dev. Biol, 10 (2022), 884467 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2022.884467'>10.3389/fcell.2022.884467</ext-link>
[47] M. You, Z. Xie, N. Zhang, Y. Zhang, D. Xiao, S. Liu, W. Zhuang, L. Li, Y. Tao, “Signaling pathways in cancer metabolism: mechanisms and therapeutic targets”, Signal Transduct. Target. Ther, 8 (2023), 196 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41392-023-01442-3'>10.1038/s41392-023-01442-3</ext-link>
[48] H. A. Hamad, H. H. Enezei, A. Alrawas, N. M. Zakuan, N. A. Abdullah, Y. K. Cheah, N. F.M. Hashim, “Identification of Potential Chemical Substrates as Fuel for Hypoxic Tumors That May Be Linked to Invadopodium Formation in Hypoxia-Induced MDA-MB-231 Breast Cancer Cell Line”, Molecules, 25:17 (2020), 3876 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/molecules25173876'>10.3390/molecules25173876</ext-link>
[49] N. V. Popova, M. Jucker, “The Functional Role of Extracellular Matrix Proteins in Cancer”, Cancers, 14:1 (2022), 238 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/cancers14010238'>10.3390/cancers14010238</ext-link>
[50] W. Wang, X. Wang, F. Yao, C. Huang, “Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer”, Int. J. Mol. Sci, 23:20 (2022), 12270 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms232012270'>10.3390/ijms232012270</ext-link>
[51] M. Meysami, M. Rahaie, A. Ebrahimi, F. Samiee, “Four Matrix Metalloproteinase genes involved in murine breast cancer affected by ginger extract”, Gene Rep, 25 (2021), 101332 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.genrep.2021.101332'>10.1016/j.genrep.2021.101332</ext-link>
[52] Y. Jiang, B. Wang, J. K. Li, S. Y. Li, R. L. Niu, N. Q. Fu, J. J. Zheng, G. Liu, Z. L. Wang, Collagen fiber features and COL1A1: are they associated with elastic parameters in breast lesions, and can COL1A1 predict axillary lymph node metastasis?, BMC Cancer, 22:1 (2022) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12885-022-10092-7'>10.1186/s12885-022-10092-7</ext-link>
[53] X. Li, X. Sun, C. Kan, B. Chen, N. Qu, N. Hou, Y. Liu, F. Han, “COL1A1: A novel oncogenic gene and therapeutic target in malignancies”, Pathol. Res. Pract, 236 (2022), 154013 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.prp.2022.154013'>10.1016/j.prp.2022.154013</ext-link>