Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 646-657

Voir la notice de l'article provenant de la source Math-Net.Ru

Biofilm formation can lead to multiple problems – for example, biofilms formed by the pathogenic Escherichia coli strains cause chronic urinary tract infections and gastroenteritis that can hardly be treated with antibiotics. Despite obvious priority, the key regulators and signals leading to a switch of bacterial lifestyle from free-living to attachment and biofilm formation are still not fully known. Here, an analysis was made to compare transcriptomes of the E. coli K-12 MG1655 cells growing in standard laboratory conditions and in conditions close to that inside a host organism. It was shown that upon cell transition from the free-living lifestyle to biofilms a huge rearrangement of their carbon metabolism occurred, and a key role belonged to hexuronate metabolism. At the same time, 6S RNA SsrS was dramatically overexpressed. In the second part, differential expression of genes in the E. coli K-12 MG1655 cells growing in the biofilm-forming conditions upon deletion of the yjjM gene coding for one of hexuronate regulators, YjjM (LgoR), was analysed. During this work, an analysis pipeline was optimized to allow trimming of randomly attached adaptors. The data obtained clearly indicate that small regulatory RNAs, including SsrS, play a key role in the biofilm formation by E. coli K-12, along with the YjjM protein. It was also revealed that YjjM might regulate the processes of protein biosynthesis, mRNA stabilization and antiphage defense. These observations clearly need further investigation.
@article{MBB_2024_19_2_a9,
     author = {A. D. Kaznadzey and A. I. Dakhnovets and T. A. Bessonova and M. N. Tutukina},
     title = {Analysis of transcriptomes of the free-living {\emph{Escherichia} coli} {K-12} {MG1655} and their biofilms},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {646--657},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a9/}
}
TY  - JOUR
AU  - A. D. Kaznadzey
AU  - A. I. Dakhnovets
AU  - T. A. Bessonova
AU  - M. N. Tutukina
TI  - Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 646
EP  - 657
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a9/
LA  - ru
ID  - MBB_2024_19_2_a9
ER  - 
%0 Journal Article
%A A. D. Kaznadzey
%A A. I. Dakhnovets
%A T. A. Bessonova
%A M. N. Tutukina
%T Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 646-657
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a9/
%G ru
%F MBB_2024_19_2_a9
A. D. Kaznadzey; A. I. Dakhnovets; T. A. Bessonova; M. N. Tutukina. Analysis of transcriptomes of the free-living \emph{Escherichia coli} K-12 MG1655 and their biofilms. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 646-657. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a9/

[1] J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, “Microbial biofilms”, Annual Review of Microbiology, 49 (1995), 711–745 | DOI | DOI

[2] Yu. A. Nikolaev, V. K. Plakunov, Bioplenka “Gorod mikrobov” ili analog mnogokletochnogo organizma?, Mikrobiologiya, 76:2 (2007), 149–163

[3] J. B. Kaper, J. P. Nataro, H. L. Mobley, “Pathogenic Escherichia coli”, Nature Reviews. Microbiology, 2:2 (2004), 123–140 | DOI | DOI

[4] T. K. Wood, A. F.G. Barrios, M. Herzberg, J. Lee, “Motility influences biofilm architecture in Escherichia coli”, Applied Microbiology and Biotechnology, 72:2 (2006), 361–367 | DOI | DOI

[5] B. M. Pruß, C. Besemann, A. Denton, A. J. Wolfe, “A Complex Transcription Network Controls the Early Stages of Biofilm Development by Escherichia coli”, Journal of bacteriology, 188:11 (2006), 3731–3739 | DOI | DOI

[6] C. Beloin, J. Valle, P. Latour-Lambert, P. Faure, M. Kzreminski, D. Balestrino, J. A.J. Haagensen, S. Molin, G. Prensier, B. Arbeille, J. M. Ghigo, “Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression”, Molecular Microbiology, 51:3 (2004), 659–674 | DOI | DOI

[7] L. A. Pratt, R. Kolter, “Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili”, Molecular Microbiology, 30:2 (1998), 285–293 | DOI | DOI

[8] M. Hammar, Z. Bian, S. Normark, “Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli”, Proceedings of the National Academy of Sciences of the United States of America, 93:13 (1996), 6562–6566 | DOI | DOI

[9] P. Bertin, E. Terao, E. H. Lee, P. Lejeune, C. Colson, A. Danchin, E. Collatz, “The H-NS protein is involved in the biogenesis of flagella in Escherichia coli”, Journal of Bacteriology, 176:17 (1994), 5537–5540 | DOI | DOI

[10] D. W. Jackson, J. W. Simecka, T. Romeo, “Catabolite repression of Escherichia coli biofilm formation”, Journal of Bacteriology, 184:12 (2002), 3406–10 | DOI | DOI

[11] X. Wang, J. F. Preston, T. Romeo, “The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation”, Journal of Bacteriology, 184:9 (2004), 2724–2734 | DOI | DOI

[12] S. Gudapaty, K. Suzuki, X. Wang, P. Babitzke, T. Romeo, “Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli”, Journal of Bacteriology, 183:20 (2001), 6017–6027 | DOI | DOI

[13] X. Wang, A. K. Dubey, K. Suzuki, C. S. Baker, P. Babitzke, T. Romeo, “CsrA post transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli”, Molecular Microbiology, 56:6 (2005), 1648–1663 | DOI | DOI

[14] T. Mizuno, M. Y. Chou, M. Inouye, “A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA)”, Proceedings of the National Academy of Sciences of the United States of America, 81:7 (1984), 1966–1970 | DOI | DOI

[15] K. M. Wassarman, G. Storz, “6S RNA regulates E coli RNA polymerase activity”, Cell, 101:6 (2000), 613–623 | DOI | DOI

[16] J. H. Urban, J. Vogel, “Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation”, PLoS Biology, 6:3 (2008), e64 | DOI | DOI

[17] R. R. Kulesus, K. Diaz-Perez, E. S. Slechta, D. S. Eto, M. A. Mulvey, “Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli”, Infection and Immunity, 76:7 (2008), 3019–3026 | DOI | DOI

[18] T. Jia, P. Wu, B. Liu, M. Liu, H. Mu, D. Liu, M. Huang, L. Li, Y. Wei, L. Wang, Q. Yang, Y. Liu, B. Yang, D. Huang, L. Yang, B. Liu, “The phosphate-induced small RNA EsrL promotes E coli virulence, biofilm formation, and intestinal colonization”, Science Signaling, 16 (2023), eabm0488, 767 | DOI | DOI

[19] P. Ritzenthaler, M. Mata-Gilsinger, “Use of in vitro gene fusions to study the uxuR regulatory gene in Escherichia coli K-12: direction of transcription and regulation of its expression”, Journal of Bacteriology, 150:3 (1982), 1040–1047 | DOI | DOI

[20] M. N. Tutukina, A. I. Dakhnovets, A. D. Kaznadzey, M. S. Gelfand, O. N. Ozoline, “Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein”, Frontiers in Molecular Biosciences, 10 (2023), 1121376 | DOI | DOI

[21] J. L. Reed, T. R. Patel, K. H. Chen, A. R. Joyce, M. K. Applebee, C. D. Herring, O. T. Bui, E. M. Knight, S. S. Fong, B. O. Palsson, “Systems approach to refining genome annotation”, Proceedings of the National Academy of Sciences of the United States of America, 103:46 (2006), 17480–17484 | DOI | DOI

[22] T. A. Bessonova, U. D. Kuznetsova, A. T. Magkaev, M. S. Gelfand, O. N. Ozolin, M. N. Tutukina, “Svyaz metabolizma geksuronatov so sposobnostyu Escherichia coli k adgezii i formirovaniyu bioplenok”, Mikrobiologiya, 93:4 (2024), 462–467

[23] NCBI RefSeq, (data obrascheniya: 10.12.2024) https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/

[24] FastQC, (data obrascheniya: 10.12.2024) https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[25] Trim Galore, (data obrascheniya: 10.12.2024) https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

[26] B. Langmead, S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2”, Nature Methods, 9 (2012), 357–359 | DOI | DOI

[27] SAMtools, (data obrascheniya: 10.12.2024) https://samtools.sourceforge.net/

[28] Subread package, (data obrascheniya: 10.12.2024) https://samtools.source-forge.net/

[29] M. I. Love, W. Huber, S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2”, Genome Biology, 15:550 (2014) | DOI | DOI

[30] Z. Gu, R. Eils, M. Schlesner, “Complex heatmaps reveal patterns and correlations in multidimensional genomic data”, Bioinformatics, 32:18 (2016), 2847–2849 | DOI | DOI

[31] B. Monier, A. McDermaid, J. Zhao, Q. Ma, vidger: Create rapid visualizations of RNAseq data R, R package version 1.26.0, 2024 https://bioconductor.org/packages/release/bioc/html/vidger.html

[32] RColorBrewer, (data obrascheniya: 10.12.2024) https://cran.r-project.org/web/packages/RColorBrewer/index.html

[33] circlize, (data obrascheniya: 10.12.2024) https://cran.r-project.org/web/packages/circlize/index.html

[34] gplots, (data obrascheniya: 10.12.2024) https://cran.r-project.org/web/packages/gplots/index.html

[35] E. Kopylova, L. Noe, H. Touzet, “SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data”, Bioinformatics, 28:24 (2012), 3211–3217 | DOI | DOI

[36] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O. Glockner, “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools”, Nucleic Acids Research, 41:D1 (2013), D590–D596 | DOI | DOI

[37] STAR (v2. 7.11b), (data obrascheniya: 10.12.2024) https://github.com/alexdobin/STAR

[38] K. M. Wassarman, G. Storz, “6S RNA regulates E. coli RNA polymerase activity”, Cell, 101:6 (2000), 613–623 | DOI | DOI

[39] D. Benhalevy, E. S. Bochkareva, I. Biran, E. Bibi, “Model Uracil-Rich RNAs and Membrane Protein mRNAs Interact Specifically with Cold Shock Proteins in Escherichia coli”, PLoS One, 10:7 (2015), e0134413 | DOI | DOI