Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_2_a2, author = {A. D. Tsvetkova and D. Yu. Shvets and Kh. G. Musin and B. R. Kuluev}, title = {Modeling of the structure of the {tRolC} protein of {\emph{Nicotiana} tabacum} and its functional relation to other proteins}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {322--337}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a2/} }
TY - JOUR AU - A. D. Tsvetkova AU - D. Yu. Shvets AU - Kh. G. Musin AU - B. R. Kuluev TI - Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 322 EP - 337 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a2/ LA - ru ID - MBB_2024_19_2_a2 ER -
%0 Journal Article %A A. D. Tsvetkova %A D. Yu. Shvets %A Kh. G. Musin %A B. R. Kuluev %T Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 322-337 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a2/ %G ru %F MBB_2024_19_2_a2
A. D. Tsvetkova; D. Yu. Shvets; Kh. G. Musin; B. R. Kuluev. Modeling of the structure of the tRolC protein of \emph{Nicotiana tabacum} and its functional relation to other proteins. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 322-337. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a2/
[1] L. Otten, “The Agrobacterium phenotypic plasticity (plast) genes”, Current Topics in Microbiology and Immunology, 418 (2018), 375–419 | DOI | DOI
[2] A. D. Meyer, T. Ichikawa, F. Meins, “Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene”, Molecular General genetics: MGG, 249:3 (1995), 265–273 | DOI | DOI
[3] G. R. Gumerova, A. V. Chemeris, Yu. M. Nikonorov, B. R. Kuluev, “Morfologicheskii i molekulyarnyi analiz izolirovannykh kultur adventivnykh kornei tabaka, poluchennykh metodami bioballisticheskoi bombardirovki i agrobakterialnoi transformatsii”, Fiziologiya rastenii, 65:5 (2018), 376–387 | DOI | DOI
[4] B. R. Kuluev, Kh. G. Musin, E. A. Baimukhametova, “Vklad gena tROLC v regulyatsiyu rosta tabaka pri deistvii stressovykh faktorov”, Biomics, 13:3 (2021), 360–367 | DOI | DOI
[5] H. Mohajjel-Shoja, B. Clement, J. Perot, M. Alioua, L. Otten, “Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes”, Molecular Plant-Microbe Interactions: MPMI, 24:1 (2011), 44–53 | DOI | DOI
[6] B. T. Favero, Y. Tan, Y. Lin, H. B. Hansen, N. Shadmani, J. Xu, J. He, R. Muller, A. Almeida, H. Lutken, “Transgenic Kalanchoe blossfeldiana, containing individual rol genes and open reading frames under 35S promoter, exhibit compact habit, reduced plant growth, and altered ethylene tolerance in flowers”, Frontiers in Plant Science, 12 (2021), 672023 | DOI | DOI
[7] Yu. Shkryl, G. Veremeichik, T. Avramenko, T. Gorpenchenko, G. Tchernoded, V. Bulgakov, “Transcriptional regulation of enzymes involved in ROS metabolism and abiotic stress resistance in rolC-transformed cell cultures”, Plant Growth Regulation, 97 (2022), 485–497 | DOI | DOI
[8] S. Kitakura, T. Fujita, Y. Ueno, S. Terakura, H. Wabiko, Y. Machida, “The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco”, The Plant Cell, 14:2 (2002), 451–463 | DOI | DOI
[9] J. J. Estruch, D. Chriqui, K. Grossmann, J. Schell, A. Spena, “The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates”, The EMBO Journal, 10:10 (1991), 2889–2895 | DOI | DOI
[10] T. V. Matveeva, S. V. Sokornova, L. A. Lutova, “Influence of Agrobacterium oncogenes on secondary metabolism of plants”, Phytochemistry Reviews, 14 (2015), 541–554 | DOI | DOI
[11] M. Faiss, M. Strnad, P. Redig, K. Dolezal, J. Hanus, H. Van Onckelen, T. Schmulling, “Chemically induced expression of the rolC-encoded-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta”, The Plant Journal, 10:1 (1996), 33–46 | DOI | DOI
[12] M. A. Alcalde, M. Muller, S. Munne-Bosch, M. Landin, P. P. Gallego, M. Bonfill, J. Palazon, D. Hidalgo-Martinez, “Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots”, Frontiers in Plant Science, 13 (2022), 1001023 | DOI | DOI
[13] G. V. Khafizova, T. V. Matveeva, “Gen rolC agrobakterii: na puti k ponimaniyu funktsii”, Biotekhnologiya i selektsiya rastenii, 4:1 (2021), 36–46 | DOI | DOI
[14] R. Yokoyama, T. Hirose, N. Fujii, E. T. Aspuria, A. Kato, H. Uchimiya, “The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants”, Molecular General Genetics: MGG, 244:1 (1994), 15–22 | DOI | MR | DOI | MR
[15] RCSB Protein Data Bank (RCSB PDB), (accessed 18.09.2024) https://www.rcsb.org/
[16] AlphaFold Protein Structure Database, (accessed 18.09.2024) https://www.alphafold.com/
[17] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko et al, “Highly accurate protein structure prediction with AlphaFold”, Nature, 596:7873 (2021), 583–589 | DOI | DOI
[18] S. K. Burley, C. Bhikadiya, C. Bi, S. Bittrich, H. Chao, L. Chen, P. A. Craig, G. V. Crichlow, K. Dalenberg, J. M. Duarte et al, “RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning”, Nucleic Acids Research, 51:1 (2023), 488–508 | DOI | DOI
[19] J. Yang, Y. Zhang, “Protein Structure and Function Prediction Using I-TASSER”, Curr. Protoc. Bioinformatics, 2015 | DOI | DOI
[20] J. Yang, Y. Zhang, “I-TASSER server: new development for protein structure and function predictions”, Nucleic Acids Research, 43 (2015), 174–181 | DOI | DOI
[21] NCBI Entrez, (accessed 18.09.2024) https://www.ncbi.nlm.nih.gov/
[22] NCBI BLAST, (accessed 18.09.2024) https://blast.ncbi.nlm.nih.gov/Blast.cgi
[23] EMBL-EBI Clustal Omega, (accessed 18.09.2024) https://www.ebi.ac.uk/jdispatcher/msa/clustalo
[24] A. M. Waterhouse, J. B. Procter, D. M.A. Martin, M. Clamp, G. J. Barton, “Jalview Version 2-a multiple sequence alignment editor and analysis workbench”, Bioinformatics, 25:9 (2009), 1189–1191 | DOI | MR | DOI | MR
[25] I-TASSER, (accessed 18.09.2024) https://zhanggroup.org/I-TASSER/
[26] TM-score Server, (accessed 18.09.2024) https://zhanggroup.org/TM-score/
[27] TAIR, (accessed 18.09.2024) v2.arabidopsis.org
[28] STRING, (accessed 18.09.2024) string-db.org
[29] K. Chen, F. Dorlhac de Borne, E. Szegedi, L. Otten, “Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana”, The Plant Journal: For Cell and Molecular Biology, 80:4 (2014), 669–682 | DOI | DOI
[30] T. V. Matveeva, S. V. Sokornova, “Biologicheskie osobennosti prirodno transgennykh rastenii i ikh rol v evolyutsii”, Fiziologiya rastenii, 64:5 (2017), 323–336 | DOI | DOI
[31] Y. Xu, Z. Liu, L. Cai, D. Xu, “Protein structure prediction by protein threading”, Computational Methods for Protein Structure Prediction and Modeling, 2010, 1–42 | DOI | DOI
[32] W. Zheng, Q. Wuyun, X. Zhou, Y. Li, P. L. Freddolino, Y. Zhang, “LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation”, Nucleic Acids Research, 50 (2022), 454–464 | DOI | DOI
[33] M. Wang, T. Soyano, S. Machida, J. Y. Yang, C. Jung, N. H. Chua, Y. A. Yuan, “Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b”, Genes Development, 25:1 (2011), 64–76 | DOI | DOI
[34] Y. Zhang, J. Skolnick, “TM-align: a protein structure alignment algorithm based on the TM-score”, Nucleic Acids Research, 33:7 (2005), 2302–2309 | DOI | DOI
[35] Q. Deng, J. T. Barbieri, “Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins”, Annual Review of Microbiology, 62 (2008), 271–288 | DOI | DOI
[36] W. Qiu, R. Lam, O. Voytyuk, V. Romanov, R. Gordon, S. Gebremeskel, J. Vodsedalek, C. Thompson, I. Beletskaya, K. P. Battaile et al, “Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2”, Acta Crystallographica. Section D, Biological Crystallography, 70:10 (2014), 2740–2753 | DOI | DOI
[37] C. Zhang, P. L. Freddolino, Y. Zhang, “COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information”, Nucleic Acids Research, 45:1 (2017), 291–299
[38] J. Yang, A. Roy, Y. Zhang, “Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment”, Bioinformatics (Oxford, England), 29:20 (2013), 2588–2595
[39] C. Zhang, X. Zhang, P. L. Freddolino, Y. Zhang, “BioLiP2: an updated structure database for biologically relevant ligand-protein interactions”, Nucleic Acids Research, 52:1 (2024), 404–412 | DOI | DOI
[40] H. Zhang, Z. Gu, Q. Wu, L. Yang, C. Liu, H. Ma, Y. Xia, X. Ge, “Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl)ation”, Scientific Reports, 5 (2015), 15892 | DOI | DOI
[41] L. Aravind, D. Zhang, R. F. de Souza, S. Anand, L. M. Iyer, “The natural history of ADP ribosyltransferases and the ADP-ribosylation system”, Current Topics in Microbiology and Immunology, 384 (2015), 3–32 | DOI | DOI
[42] J. G.M. Rack, L. Palazzo, I. Ahel, “(ADP-ribosyl)hydrolases: structure, function, and biology”, Genes Development, 34 (2020), 263–284 | DOI | DOI
[43] A. Huber, P. Bai, J. M. de Murcia, G. de Murcia, “PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development”, DNA Repair, 3:8-9 (2004), 1103–1108 | DOI | DOI
[44] B. A. Gibson, W. L. Kraus, “New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs”, Nature Reviews. Molecular Cell Biology, 13:7 (2012), 411–424 | DOI | DOI
[45] T. Kalisch, J. C. Ame, F. Dantzer, V. Schreiber, “New readers and interpretations of poly(ADP-ribosyl)ation”, Trends in Biochemical Sciences, 37:9 (2012), 381–390 | DOI | DOI
[46] A. Leung, T. Todorova, Y. Ando, P. Chang, “Poly(ADP-ribose) regulates post transcriptional gene regulation in the cytoplasm”, RNA Biology, 9:5 (2012), 542–548 | DOI | DOI
[47] Y. Amor, E. Babiychuk, D. Inze, Levine, A., “The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants”, FEBS Letters, 440:1-2 (1998), 1–7 | DOI | DOI
[48] M. De Block, C. Verduyn, D. De Brouwer, M. Cornelissen, “Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance”, The Plant Journal: For Cell and Molecular Biology, 41 (2005), 95–106 | DOI | DOI
[49] Tian R.H, G. Y. Zhang, C. H. Yan, Y. R. Dai, “Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells”, FEBS Letters, 474:1 (2000), 11–15 | DOI | DOI
[50] G. M. Frost, K. S. Yang, G. R. Waller, “Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L”, The Journal of Biological Chemistry, 242:5 (1967), 887–888 | DOI | DOI
[51] G. Amini, S. Sokornova, H. Mohajjel-Shoja, A. N. Stavrianidi, I. Rodin, T. V. Matveeva, “Induced expression of rolC for study of its effect on the expression of genes associated with nicotine synthesis in tobacco”, Ecological Genetics, 18:4 (2020), 413–422 | DOI | DOI
[52] J. Palazon, R. M. Cusido, C. Roig, M. T. Pinol, “Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants”, Plant Cell Reports, 17:5 (1998), 384–390 | DOI | DOI
[53] A. Helfer, B. Clement, P. Michler, L. Otten, “The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco”, Plant Molecular Biology, 52:2 (2003), 483–493 | DOI | DOI
[54] L. Gremillon, A. Helfer, B. Clement, L. Otten, “New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter”, The Plant Journal: For Cell and Molecular Biology, 37:2 (2004), 218–228 | DOI | DOI
[55] S. Kitakura, S. Terakura, Y. Yoshioka, C. Machida, Y. Machida, “Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus”, Journal of Plant Research, 121:4 (2008), 425–433 | DOI | DOI
[56] S. Terakura, Y. Ueno, H. Tagami, S. Kitakura, C. Machida, H. Wabiko, H. Aiba, L. Otten, H. Tsukagoshi, K. Nakamura et al, “An oncoprotein from the plant pathogen agrobacterium has histone chaperone-like activity”, The Plant Cell, 19:9 (2007), 2855–2865 | DOI | DOI
[57] S. Terakura, S. Kitakura, M. Ishikawa, Y. Ueno, T. Fujita, C. Machida, H. Wabiko, Y. Machida, “Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles”, Plant and Cell Physiology, 47:5 (2006), 664–672 | DOI | DOI
[58] R. Zhong, C. Lee, J. Zhou, R. L. McCarthy, Z. H. Ye, “A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis”, The Plant Cell, 20:10 (2008), 2763–2782 | DOI | DOI
[59] U. Avci, H. Earl Petzold, I. O. Ismail, E. P. Beers, C. H. Haigler, “Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots”, The Plant Journal: For Cell and Molecular Biology, 56:2 (2008), 303–315 | DOI | DOI