Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 472-485

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical modeling of the nature of the motion and distribution of the Holstein polaron in a homogeneous polynucleotide chain in a constant electric field and under the simultaneous influence of constant and alternating electric fields was carried out. The conducted researches showed significant differences in the velocity and nature of the polaron movement in the chain when exposed only to a constant electric field and when exposed simultaneously to constant and alternating electric fields. Particularly large differences are observed in chains with parameters close to the parameters of DNA chains. Modeling the motion of a polaron under the simultaneous influence of constant and alternating electric fields showed that it is possible for a charge to move over very large distances. In this case, the nature of the polaron’s motion is very different from the nature of the polaron’s motion in a constant electric field. And even in the polyG/polyC DNA chain, the polaron moves along the chain over a sufficiently large distance. It is shown that for a certain set of parameters, the motion of a polaron in a chain under the simultaneous influence of constant and alternating electric fields can look like a motion with an average constant velocity.
@article{MBB_2024_19_2_a18,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {Dynamics of the {Holstein} polaron under constant and combined action of constant and alternating electric fields},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {472--485},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a18/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 472
EP  - 485
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a18/
LA  - ru
ID  - MBB_2024_19_2_a18
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 472-485
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a18/
%G ru
%F MBB_2024_19_2_a18
A. N. Korshounova; V. D. Lakhno. Dynamics of the Holstein polaron under constant and combined action of constant and alternating electric fields. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 472-485. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a18/

[1] Chakraborty Tapash (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, NanoScience and Technology, XVIII, Springer, Berlin–Heidelberg–New York, 2007, 288 pp. | DOI | DOI

[2] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 | DOI | DOI

[3] Schuster G.B. (ed.), Long-range charge transfer in DNA II, Springer, 2004 | DOI | DOI

[4] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Mathematical Biology and Bioinformatics, 14:2 (2019), 406–419 | DOI | DOI

[5] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI | DOI

[6] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 | DOI | DOI

[7] T. Dauxois, M. Peyrard, A. R. Bishop, “Dynamics and thermodynamics of a nonlinear model for DNAdenaturation”, Phys. Rev. E, 47 (1993), 684 | DOI | DOI

[8] J. H. Ojeda, R. P.A. Lima, F. Domnguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, Journal of Physics: Condensed Matter, 21 (2009), 285105 | DOI | DOI

[9] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 | DOI | DOI

[10] E. B. Starikov, “Electronphonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI | DOI

[11] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 | DOI | DOI

[12] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 | DOI | DOI

[13] E. Daz, R. P.A. Lima, F. Domnguez-Adame, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI | DOI

[14] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 | DOI | DOI

[15] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI | DOI

[16] A. L.S. Pereira, M. L. Lyra, F. A.B. F. de Moura, A. Ranciaro Neto, W. S. Dias, “Nonlinear wave-packet dynamics resonantly driven by AC and DC fields”, Commun. Nonlinear Sci. Numer Simulat., 64 (2018), 89–97 | DOI | Zbl | DOI | Zbl

[17] D. Morais, P. E. de Brito, H. N. Nazareno, W. S. Dias, “The superposed electric field effect on the charge transport and polaron formation in molecular crystals”, J. Phys.: Condens. Matter, 34 (2022), 455302 | DOI | DOI

[18] Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao, “Transient Dynamics of Super Bloch Oscillations of a 1D Holstein Polaron under the Influence of an External AC Electric Field”, Annalen der Physik, 531 (2019), 1800303 | DOI | DOI

[19] C. Herrero-Gmez, E. Daz, F. Domnguez-Adame, “Super Bloch oscillations in the Peyrard-Bishop-Holstein model”, Physics Letters A, 376 (2012), 555–558 | DOI | DOI

[20] K. Kudo, T. S. Monteiro, “Theoretical analysis of super-Bloch oscillations”, Phys.Rev.A, 83 (2011), 053627 | DOI | DOI

[21] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Euro. Phys. J. B., 55 (2007), 85–87 | DOI | DOI

[22] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B., 79 (2011), 147–151 | DOI | DOI

[23] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric feld”, Chaos, Solitons and Fractals, 182 (2024), 114786 | DOI | DOI

[24] Korshunova A.N., Lakhno V.D., “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 8:9 (2018), 1312-1319 | DOI | DOI

[25] Korshunova A.N., Lakhno V.D., “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 452-464 | DOI | DOI

[26] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 | DOI | Zbl | DOI | Zbl

[27] T. Holstein, “Studies of polaron motion: Part II. The small polaron”, Annals of Phys., 8 (1959), 343–389 | DOI | Zbl | DOI | Zbl

[28] A. N. Korshunova, V. D. Lakhno, “Anew type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 | DOI | DOI

[29] A. N. Korshunova, V. D. Lakhno, “Dependence of the nature of the Holstein polaron motion in a polynucleotide chain subjected to a constant electric field on the initial polaron state and the parameters of the chain”, Journal of Physics: Conference Series, 2155 (2022), 012031 | DOI | DOI

[30] Korshunova A.N., Lakhno V.D., “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 446-463 | DOI | DOI