Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 439-452

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the Holstein polaron model, the problem of modeling Bloch oscillations of a quantum charged particle in a chain of classical sites placed in a uniform electric field is considered. As is known, in a rigid lattice, Bloch oscillations describe charge oscillations under the influence of a constant electric field. Biopolymers are considered as non-rigid lattice, and movement of lattice sites have significant effect on the charge dynamics. Most of the computational experiments were carried out with the parameters values of homogeneous polyguanine fragments of DNA. At the initial moment, the charge “arises” at one site of the chain placed in a field with constant intensity, so charge have no time to form a polaron. The dynamics of charge in an unperturbed chain (at zero temperature) is simulated. Minimum chain length is estimated, for which end effects have not influence on the charge dynamics during Bloch oscillations. For the center of mass motion of the charge, a comparative analysis was carried out with the dynamics of the polaron, previously studied by Korshunova and Lakhno. A simulation of Bloch charge oscillations at a finite temperature was performed. To determine the frequency of charge oscillations, in addition to visual control, a Fourier series expansion was used. It is shown that averaging over realizations leads to smoothing of oscillations, which complicates the study of the influence of temperature on Bloch oscillations. Based on the simulation results, we assume that it is necessary to study the dynamics of individual implementations in more detail, in order to determine the temperature at which Bloch oscillations are disrupted.
@article{MBB_2024_19_2_a17,
     author = {N. S. Fialko},
     title = {Modeling of charge dynamics in synthetic {DNA} under the influence of an external electric field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {439--452},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a17/}
}
TY  - JOUR
AU  - N. S. Fialko
TI  - Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 439
EP  - 452
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a17/
LA  - ru
ID  - MBB_2024_19_2_a17
ER  - 
%0 Journal Article
%A N. S. Fialko
%T Modeling of charge dynamics in synthetic DNA under the influence of an external electric field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 439-452
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a17/
%G ru
%F MBB_2024_19_2_a17
N. S. Fialko. Modeling of charge dynamics in synthetic DNA under the influence of an external electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 439-452. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a17/

[1] Schuster G.B., Long-Range Charge Transfer in DNA I, Topics in Current Chemistry, 236, Springer, 2004, 219 pp. | DOI | DOI

[2] Hans-Achim W., H. B. Gray (eds.), Charge Transfer in DNA: From Mechanism to Application, John Wiley Sons, 2006, 245 pp.

[3] Chakraborty T. (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, Springer, Berlin, 2007, 288 pp. | DOI | DOI

[4] J. C. Genereux, J. K. Barton, “Mechanisms for DNA Charge Transport”, Chem. Rev, 110:3 (2010), 1642–1662 | DOI | DOI

[5] Schuster G.B. (ed.), Long-Range Charge Transfer in DNA II, Topics in Current Chemistry, 237, Springer, 2004, 245 pp. | DOI | DOI

[6] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 | DOI | DOI

[7] Offenhausser A., R. Rinaldi (eds.), Nanobioelectronics for Electronics, Biology, and Medicine, Springer, New York, 2009, 337 pp. | DOI | DOI

[8] M. Ratner, “A brief history of molecular electronics”, Nature Nanotechnology, 8:6 (2013), 378–381 | DOI | DOI

[9] Jastrzebska-Perfect P., Spyropoulos G.D., Cea C., Zhao Z., Rauhala O.J., Viswanathan A., Sheth S.A., Gelinas J.N., Khodagholy D., “Mixed-conducting particulate composites for soft electronics”, Sci. Adv., 6:17 (2020) | DOI | DOI

[10] V. D. Lakhno, A. V. Vinnikov, “Molekulyarnye ustroistva na osnove DNK”, Mat. biol. i bioinf, 16:1 (2021), 115–135 | DOI | DOI

[11] F. D. Lewis, R. M. Young, M. R. Wasielewski, “Tracking photoinduced charge separation in DNA: from start to finish”, Acc. Chem. Res, 51:8 (2018), 1746–1754 | DOI | DOI

[12] E. C.M. Tse, T. J. Zwang, S. Bedoya, J. K. Barton, “Effective distances for DNA-mediated charge transport between repair proteins”, ACS Central Sci, 5:1 (2019), 65–72 | DOI | DOI

[13] P. J. Kolbeck, M. Tisma, B. T. Analikwu, W. Vanderlinden, C. Dekker, J. Lipfert, “Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments”, Nucleic acids research, 52:1 (2024), 59–72 | DOI | DOI

[14] Starikov E. B., S. Tanaka, J. P. Lewis (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier Scientific, Amsterdam, 2006, 461 pp.

[15] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 | DOI | MR | DOI | MR

[16] J. H. Ojeda, R. P.A. Lima, F. Dominguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, J. Phys.: Condens Matter, 21 (2009), 285105 | DOI | DOI

[17] V. D. Lakhno, “Davydov's solitons in homogeneous nucleotide chain”, International Journal of Quantum Chemistry, 110 (2010), 127–137 | DOI | MR | DOI | MR

[18] T. Yu. Astakhova, V. A. Kashin, V. N. Likhachev, G. A. Vinogradov, “Polaron dynamics on the nonlinear lattice in the Su-Schrieffer-Heeger approximation. Exact and approximate solutions”, Acta Physica Polonica A, 129:3 (2016), 334–339 | DOI | DOI

[19] D. Rawtani, B. Kuntmal, Y. Agrawal, “Charge transfer in DNA and its diverse modelling approaches”, Frontiers in Life Science, 9:3 (2016), 214–225 | DOI | DOI

[20] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Physics, 8:3 (1959), 325–342 | DOI | Zbl | DOI | Zbl

[21] T. Holstein, “Studies of polaron motion: Part II. The “small” polaron”, Annals of Physics, 8:3 (1959), 343–389 | DOI | Zbl | DOI | Zbl

[22] E. M. Conwell, “Charge transport in DNA in solution: The role of polarons”, PNAS, 102:25 (2005), 8795–9 | DOI | DOI

[23] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI | DOI

[24] J. A. Berashevich, A. D. Bookatz, T. Chakraborty, “The electric field effect and conduction in the Peyrard-Bishop-Holstein model”, J. Phys.: Condens. Matter, 20 (2008), 035207 | DOI | DOI

[25] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147–151 | DOI | DOI

[26] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 | DOI | DOI

[27] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85 | DOI | DOI

[28] A. N. Korshunova, V. D. Lakhno, “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 88:9 (2018), 1312–1319 | DOI | DOI

[29] A. N. Korshunova, V. D. Lakhno, “Dva tipa ostsillyatsii kholsteinovskogo polyarona, ravnomerno dvizhuschegosya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 14:2 (2019), 477–487 | DOI | DOI

[30] A. N. Korshunova, V. D. Lakhno, “Polyaronnyi perenos zaryada v odnorodnoi Poly G/Poly C-tsepochke v modeli Peirarda-Bishopa-Kholsteina v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 90:9 (2020), 1528–1536 | DOI | DOI

[31] A. N. Korshunova, V. D. Lakhno, “Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements”, Math. Biol. Bioinf, 16:2 (2021), 411–421 | DOI | DOI

[32] A. N. Korshunova, V. D. Lakhno, “Vozniknovenie vnutrennei dinamiki kholsteinovskogo polyarona v protsesse ego ravnomernogo dvizheniya v polinukleotidnoi tsepochke v postoyannom elektricheskom pole”, Mat. biol. i bioinf, 17:2 (2022), 452–464 | DOI | DOI

[33] A. N. Korshunova, V. D. Lakhno, “Perekhod ot ravnomernogo rezhima dvizheniya polyarona k kolebatelnomu pri izmenenii nachalnogo polyaronnogo sostoyaniya”, Mat. biol. i bioinf, 18:2 (2023), 446–463 | DOI | DOI

[34] E. Diaz, R. P.A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI | DOI

[35] H. Zhongkai, H. Masayuki, I. Hajime, Z. Yang, “Transient dynamics of super Bloch oscillations of a 1D Holstein polaron under the influence of an external AC electric field”, Ann. Phys, 531 (2019), 1800303 | DOI | DOI

[36] F. Bloch, “Quantum mechanics of electrons in crystal lattices [Uber die Quantenmechanik der Elektronen in Kristallgittern]”, Z. Phys, 52 (1928), 555–600 | DOI | DOI

[37] A. M. Bouchard, M. Luban, “Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices”, Phys. Rev. B, 52:7 (1995), 5105 | DOI | DOI

[38] V. D. Lakhno, N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain”, Jetp Lett, 79 (2004), 464–467 | DOI | DOI

[39] C. A.M. Seidel, A. Schulz, M. H.M. Sauer, “Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies”, J. Phys. Chem, 100:13 (1996), 5541–5553 | DOI | DOI

[40] F. D. Lewis, Y. Wu, “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, J. Photochem. Photobiol, 2:1 (2001), 1–16 | DOI | DOI

[41] A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 | DOI | DOI

[42] J. Jortner, M. Bixon, A. Voityuk, N. Rosch, “Superexchange Mediated Charge Hopping in DNA”, J. Phys. Chem. A, 106:33 (2002), 7599–7606 | DOI | DOI

[43] N. S. Fialko, E. V. Sobolev, V. D. Lakhno, “On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides”, JETP, 124:4 (2017), 635 | DOI | DOI

[44] E. Starikov, “Electron-phonon coupling in DNA: A systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI | DOI

[45] A. N. Korshunova, V. D. Lakhno, “Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric field”, Chaos, Solitons and Fractals, 182 (2024), 114786 | DOI | DOI

[46] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72:2 (2005), 021912 | DOI | DOI

[47] H. S. Greenside, E. Helfand, “Numerical integration of stochastic differential equations-II”, Bell System Technical Journal, 60 (1981), 1927–1940 | DOI | Zbl | DOI | Zbl

[48] N. S. Fialko, “Smeshannyi algoritm rascheta dinamiki perenosa zaryada v DNK na bolshikh vremennykh intervalakh”, Kompyuternye issledovaniya i modelirovanie, 2:1 (2010), 63–72 | DOI | DOI

[49] V. D. Lakhno, N. S. Fialko, “Podvizhnost dyrok v odnorodnoi nukleotidnoi tsepochke”, Pisma v ZhETF, 78:5 (2003), 786–788 | DOI | DOI

[50] I. G. Lang, Yu. A. Firsov, “Kinetic Theory of Semiconductors with Low Mobility”, JETP, 16:5 (1963), 1301

[51] N. S. Fialko, M. M. Olshevets, V. D. Lakhno, “Chislennoe issledovanie modeli Kholsteina v raznykh termostatakh”, Kompyuternye issledovaniya i modelirovanie, 16:2 (2024), 489–502 | DOI | DOI