Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_2_a16, author = {E. G. Kholina and N. B. Gudimchuk}, title = {Exploring the effects of polyglutamylation of $\alpha$-tubulin {C-terminal} regions through all-atom molecular dynamics}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {418--426}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a16/} }
TY - JOUR AU - E. G. Kholina AU - N. B. Gudimchuk TI - Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 418 EP - 426 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a16/ LA - ru ID - MBB_2024_19_2_a16 ER -
%0 Journal Article %A E. G. Kholina %A N. B. Gudimchuk %T Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 418-426 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a16/ %G ru %F MBB_2024_19_2_a16
E. G. Kholina; N. B. Gudimchuk. Exploring the effects of polyglutamylation of $\alpha$-tubulin C-terminal regions through all-atom molecular dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 418-426. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a16/
[1] N. B. Gudimchuk, J. R. McIntosh, “Regulation of Microtubule Dynamics, Mechanics and Function through the Growing Tip”, Nat. Rev. Mol. Cell Biol, 22 (2021), 777–795
[2] T. Mitchison, M. Kirschner, “Dynamic Instability of Microtubule Growth”, Nature, 312 (1984), 237–242 | DOI | DOI
[3] A. Desai, T. J. Mitchison, “Microtubule polymerization dynamics”, Annu. Rev. Cell Dev. Biol, 13 (1997), 83–117 | DOI | DOI
[4] N. B. Gudimchuk, V. V. Alexandrova, “Measuring and Modeling Forces Generated by Microtubules”, Biophys. Rev, 15 (2023), 1095–1110 | DOI | DOI
[5] S. Inoue, E. D. Salmon, “Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements”, Mol. Biol. Cell, 6 (1995), 1619–1640 | DOI | DOI
[6] A. Roll-Mecak, “The Tubulin Code in Microtubule Dynamics and Information Encoding”, Dev. Cell, 54 (2020), 7–20 | DOI | DOI
[7] A. Roll-Mecak, “Intrinsically Disordered Tubulin Tails: Complex Tuners of Microtubule Functions?”, Semin Cell Dev. Biol., 37 (2015), 11–19 | DOI | DOI
[8] A. Vemu, J. Atherton, J. O. Spector, A. Szyk, C. A. Moores, A. Roll-Mecak, “Structure and Dynamics of Single-Isoform Recombinant Neuronal Human Tubulin”, Journal of Biological Chemistry, 291 (2016), 12907–12915 | DOI | DOI
[9] J. Chen, E. Kholina, A. Szyk, V. A. Fedorov, I. Kovalenko, N. Gudimchuk, A. Roll Mecak, “$\alpha$-Tubulin Tail Modifications Regulate Microtubule Stability through Selective Effector Recruitment, not Changes in Intrinsic Polymer Dynamics”, Dev. Cell., 56 (2021), 2016–2028.e4 | DOI | DOI
[10] K. K. Mahalingan, D. A. Grotjahn, Y. Li, G. C. Lander, E. A. Zehr, A. Roll-Mecak, “Structural Basis for-Tubulin-Specific and Modification State-Dependent Glutamylation”, Nat. Chem. Biol, 20 (2024), 1493–1504
[11] L. S. Bigman, Y. Levy, “Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications”, J. Mol. Biol, 433 (2021), 166988 | DOI | DOI
[12] B. J. LaFrance, J. Roostalu, G. Henkin, B. J. Greber, R. Zhang, D. Normanno, C. O. McCollum, T. Surrey, E. Nogales, “Structural Transitions in the GTP Cap Visualized by Cryo-Electron Microscopy of Catalytically Inactive Microtubules”, Proceedings of the National Academy of Sciences, 119 (2022) | DOI | DOI
[13] B. Webb, A. Sali, “Comparative Protein Structure Modeling Using MODELLER”, Curr. Protoc. Bioinformatics, 54 (2016) | DOI | DOI
[14] The PyMOL Molecular Graphics System, Version 2.5, Schrodinger, LLC (accessed 23.11.2024) https://www.pymol.org
[15] M. H.M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions”, J. Chem. Theory Comput, 7 (2011), 525–537
[16] A. Morozenko, Stuchebrukhov A. A., “Dowser++, a New Method of Hydrating Protein Structures”, Proteins: Structure, Function, and Bioinformatics, 84 (2016), 1347–1357 | DOI | DOI
[17] A. D. Mackerell, M. Feig, C. L. Brooks, “Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations”, J. Comput. Chem, 25 (2004), 1400–1415 | DOI | DOI
[18] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmuller, A. D. MacKerell, “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins”, Nat. Methods, 14 (2017), 71–73 | DOI | DOI
[19] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers”, SoftwareX, 1-2 (2015), 19–25 | DOI | DOI
[20] V. A. Fedorov, I. B. Kovalenko, “Vliyanie mutatsii v kataliticheskom saite na formu i mekhaniku protofilamentov tubulina”, Mat. biol. i bioinf., 19:2 (2024), 393–401 | DOI | DOI
[21] M. Parrinello, A. Rahman, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method”, J. Appl. Phys, 52 (1981), 7182–7190 | DOI | DOI
[22] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A Smooth Particle Mesh Ewald Method”, J. Chem. Phys, 103 (1995), 8577–8593 | DOI | DOI