Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 402-417

Voir la notice de l'article provenant de la source Math-Net.Ru

Hepatitis C virus is a grievous disease with an increased mortality rate worldwide. Chemical-based medications possess deleterious side effects and are considered inefficient in combating viral infections. Advanced therapeutic strategies are being examined with increased specificity against viral proteins such as designing highly regular proteins facilitating the development of highly effective inhibitors. Here, we present for the first time, the use of deep learning-based large language protein model ProtGPT2 with a unique strategy to design novel therapeutic binders that have the potential to mimic host receptors and inhibit the viral protein, especially the HCV envelope glycoprotein E2 for clinically relevant genotype 1a and 1b. We generated five de novo proteins for each host receptor that mimic the human receptors, based on the interacting residues which were identified by the tools of the PDBSum database in the docked host-E2 complexes generated with the ClusPro web server. The Root Mean Square Deviation score revealed that each de novo designed binder exhibited high similarity with the human receptors indicating a successful generation. Furthermore, multiple interactions were observed between these de novo designed proteins and E2 protein, emphasizing the potential of these de novo-designed proteins as significant inhibitors. A comparative analysis of molecular docking between human interacting partners and de novo designed proteins revealed that de novo proteins, such as CD81-D1 and CLDN-D4, are the most effective inhibitors having the lowest binding energy when interacting with the most conserved regions of the E2 protein. These generated proteins may inhibit the interaction of E2 with CD81 and CLDN host receptors.
@article{MBB_2024_19_2_a15,
     author = {Noor N. Al-Hayani and Mohammed R. Mohaisen and Sara A. A. Rashid},
     title = {Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis {C} virus {E2} protein},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {402--417},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a15/}
}
TY  - JOUR
AU  - Noor N. Al-Hayani
AU  - Mohammed R. Mohaisen
AU  - Sara A. A. Rashid
TI  - Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 402
EP  - 417
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a15/
LA  - en
ID  - MBB_2024_19_2_a15
ER  - 
%0 Journal Article
%A Noor N. Al-Hayani
%A Mohammed R. Mohaisen
%A Sara A. A. Rashid
%T Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 402-417
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a15/
%G en
%F MBB_2024_19_2_a15
Noor N. Al-Hayani; Mohammed R. Mohaisen; Sara A. A. Rashid. Deep learning-assisted design of \emph{de novo} protein binders targeting hepatitis C virus E2 protein. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 402-417. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a15/

[1] P. Mehta, L. M. Grant, A. K.R. Reddivari, “Viral Hepatitis”, StatPearls, StatPearls Publishing, Treasure Island (FL), 2024 (accessed 22.11.2024) https://www.ncbi.nlm.nih.gov/books/NBK554549/

[2] V. Khullar, R. J. Firpi, “Hepatitis C cirrhosis: New perspectives for diagnosis and treatment”, World J. Hepatol, 7:14 (2015), 1843–1855 | DOI | DOI

[3] P. A. Cortesi, C. Fornari, S. Conti, I. C. Antonazzo, P. Ferrara, A. Ahmed, C. L. Andrei, T. Andrei, A. A. Artamonov, M. Banach et al, “Hepatitis B and C in Europe: an update from the Global Burden of Disease Study 2019”, Lancet Public Health, 8:9 (2023), e701–e716 | DOI | DOI

[4] R. J. Center, I. Boo, L. Phu, J. McGregor, P. Poumbourios, H. E. Drummer, “Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine”, J. Biol. Chem, 295:21 (2020), 7179–7192 | DOI | DOI

[5] E. Laugel, C. Hartard, H. Jeulin, S. Berger, V. Venard, J. P. Bronowicki, E. Schvoerer, “Full length genome sequencing of RNA viruses-How the approach can enlighten us on hepatitis C and hepatitis E viruses”, Rev. Med. Virol., 31:4 (2021), e2197 | DOI | DOI

[6] H. D. Daniel, J. David, S. Raghuraman, M. Gnanamony, G. M. Chandy, G. Sridharan, P. Abraham, “Comparison of Three Different Hepatitis C Virus Genotyping Methods: 5'NCR PCR-RFLP, Core Type-Specific PCR, and NS5b Sequencing in a Tertiary Care Hospital in South India”, J. Clin. Lab. Anal, 31:3 (2017) | DOI | DOI

[7] D. Pascut, M. Hoang, N. N.Q. Nguyen, M. Y. Pratama, C. Tiribelli, “HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development”, Cancers (Basel), 13:10 (2021), 2485 | DOI | DOI

[8] J. H. Hoofnagle, “Hepatitis C: the clinical spectrum of disease”, Hepatology, 26 (1997), 15S–20S | DOI | DOI

[9] A. Kumar, T. C. Rohe, E. J. Elrod, A. G. Khan, A. D. Dearborn, R. Kissinger, A. Grakoui, J. Marcotrigiano, “Regions of hepatitis C virus E2 required for membrane association”, Nat. Commun, 14:1 (2023) | DOI | DOI

[10] J. Yang, J. L. Qi, X. X. Wang, X. H. Li, R. Jin, B. Y. Liu, H. X. Liu, H. Y. Rao, “The burden of hepatitis C virus in the world. China, India, and the United States from 1990 to 2019”, Front. Public Health, 11 (2023) | DOI | DOI

[11] S. Roger, A. Ducancelle, H. Le Guillou-Guillemette, C. Gaudy, F. Lunel, “HCV virology and diagnosis”, Clin. Res. Hepatol. Gastroenterol, 45:3 (2021) | DOI | DOI

[12] M. Umer, M. Iqbal, “Hepatitis C virus prevalence and genotype distribution in Pakistan: Comprehensive review of recent data”, World J. Gastroenterol, 22:4 (2016), 1684–1700 | DOI | MR | DOI | MR

[13] X. Pan, T. Kortemme, “Recent advances in de novo protein design: Principles, methods, and applications”, J. Biol. Chem, 296 (2021), 100558 | DOI | DOI

[14] J. C. Jakobsen, E. E. Nielsen, J. Feinberg, K. K. Katakam, K. Fobian, G. Hauser, G. Poropat, S. Djurisic, K. H. Weiss, M. Bjelakovic et al, “Direct-acting antivirals for chronic hepatitis C”, Cochrane Database Syst. Rev, 2017, no. 9, CD012143 | DOI | DOI

[15] J. A. Gonzales Zamora, “Adverse Effects of Direct Acting Antivirals in HIV/HCV Coinfected Patients: A 4-Year Experience in Miami, Florida”, Diseases, 6:2 (2018) | DOI | DOI

[16] B. G. Pierce, Z. Y. Keck, R. Wang, P. Lau, K. Garagusi, K. Elkholy, E. A. Toth, R. A. Urbanowicz, J. D. Guest, P. Agnihotri et al, “Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization”, J. Virol, 94:22 (2020), 51 | DOI | DOI

[17] R. A. Ali, E. A. Awadalla, Y. A. Amin, S. S. Fouad, M. A. E. B. Ahmed, M. H. Hassan, E. Abdel Kahaar, R. H. Abdel-Aziz, “The deleterious effects of sofosbuvir and ribavirin (antiviral drugs against hepatitis C virus) on different body systems in male albino rats regarding reproductive, hematological, biochemical, hepatic, and renal profiles and histopathological changes”, Sci. Rep, 14:1 (2024), 5682 | DOI | DOI

[18] D. Sepulveda-Crespo, S. Resino, I. Martinez, “Hepatitis C virus vaccine design: focus on the humoral immune response”, J. Biomed. Sci, 27:1 (2020), 78 | DOI | DOI

[19] T. Kucera, M. Togninalli, L. Meng-Papaxanthos, “Conditional generative modeling for de novo protein design with hierarchical functions”, Bioinformatics, 38:13 (2022), 3454–3461 | DOI | DOI

[20] S. Ovchinnikov, P. S. Huang, “Structure-based protein design with deep learning”, Curr. Opin. Chem. Biol, 65 (2021), 136–144 | DOI | DOI

[21] N. Ferruz, M. Heinzinger, M. Akdel, A. Goncearenco, L. Naef, C. Dallago, “From sequence to function through structure: Deep learning for protein design”, Comput. Struct. Biotechnol. J., 21 (2023), 238–250 | DOI | DOI

[22] P. Koehl, M. Levitt, “De novo protein design. I. In search of stability and specificity”, J. Mol. Biol, 293:5 (1999), 1161–1181 | DOI | DOI

[23] The UniProt Consortium, “UniProt: the universal protein knowledgebase in 2021”, Nucleic Acids Res., 49:D1 (2021), D480-D489 | DOI | DOI

[24] J. Segura, Y. Rose, C. Bi, J. Duarte, S. K. Burley, S. Bittrich, “RCSB Protein Data Bank: visualizing groups of experimentally determined PDB structures alongside computed structure models of proteins”, Front. Bioinform, 3 (2023), 1311287 | DOI | DOI

[25] C. C. Huang, E. C. Meng, J. H. Morris, E. F. Pettersen, T. E. Ferrin, “Enhancing UCSF Chimera through web services”, Nucleic Acids Res., 42 (2014), W478-W484 | DOI | DOI

[26] T. Paysan-Lafosse, M. Blum, S. Chuguransky, T. Grego, B. L. Pinto, G. A. Salazar, M. L. Bileschi, P. Bork, A. Bridge, L. Colwell et al, “InterPro in 2022”, Nucleic Acids Res., 51 (2023), D418-D427 | DOI | DOI

[27] M. A. Lill, M. L. Danielson, “Computer-aided drug design platform using PyMOL”, J. Comput. Aided Mol. Des, 25:1 (2010), 13–19 | DOI | DOI

[28] M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood, A. Laydon et al, “AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models”, Nucleic Acids Res., 50:D1 (2022), D439-D444 | DOI | DOI

[29] F. N. Haron, A. Azazi, K. H. Chua, Y. A.L. Lim, P. C. Lee, C. H. Chew, “In silico structural modeling and quality assessment of Plasmodium knowlesi apical membrane antigen 1 using comparative protein models”, Trop. Biomed, 39:3 (2022), 394–401 | DOI | DOI

[30] A. Messaoudi, H. Belguith, J. Ben Hamida, “Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1-lactamase”, Theor. Biol. Med. Model, 10 (2013), 22 | DOI | DOI

[31] I. T. Desta, S. Kotelnikov, G. Jones, U. Ghani, M. Abyzov, Y. Kholodov, D. M. Standley, D. Beglov, S. Vajda, D. Kozakov, “The ClusPro AbEMap web server for the prediction of antibody epitopes”, Nat. Protoc, 18:6 (2023), 1814–1840 | DOI | DOI

[32] A. Alekseenko, M. Ignatov, G. Jones, M. Sabitova, D. Kozakov, “Protein-Protein and Protein Peptide Docking with ClusPro Server”, Methods Mol. Biol, 2165 (2020), 157–174 | DOI | DOI

[33] R. A. Laskowski, J. M. Thornton, “PDBsum extras: SARS-CoV-2 and AlphaFold models”, Protein Sci, 31:1 (2022), 283–289 | DOI | DOI

[34] R. A. Laskowski, J. Jablonska, L. Pravda, R. S. Varekova, J. M. Thornton, “PDBsum: Structural summaries of PDB entries”, Protein Sci, 27:1 (2018), 129–134 | DOI | DOI

[35] N. Ferruz, S. Schmidt, B. Hocker, “ProtGPT2 is a deep unsupervised language model for protein design”, Nat. Commun, 13:1 (2022) | DOI | DOI

[36] P. Bradley, K. M. Misura, D. Baker, “Toward high-resolution de novo structure prediction for small proteins”, Science, 309 (2005), 1868–1871 | DOI | DOI

[37] J. C. Booth, U. Kumar, D. Webster, J. Monjardino, H. C. Thomas, “Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients”, Hepatology, 27:1 (1998), 223–227 | DOI | DOI

[38] U. A. Ashfaq, T. Javed, S. Rehman, Z. Nawaz, S. Riazuddin, “An overview of HCV molecular biology, replication and immune responses”, Virol. J., 8 (2011), 161 | DOI | DOI

[39] M. Martinello, S. S. Solomon, N. A. Terrault, G. J. Dore, “Hepatitis C”, Lancet, 402:10407 (2023), 1085–1096 | DOI | DOI

[40] P. Piselli, D. Serraino, M. Fusco, E. Girardi, A. Pirozzi, F. Toffolutti, C. Cimaglia, M. Taborelli; Collaborating Study Group, “Hepatitis C virus infection and risk of liver-related and non liver-related deaths: a population-based cohort study in Naples, southern Italy”, BMC Infect. Dis, 21:1 (2021) | DOI | DOI

[41] J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles et al, “De novo design of protein structure and function with RFdiffusion”, Nature, 620:7976 (2023), 1089–1100 | DOI | DOI

[42] L. Kong, E. Giang, T. Nieusma, R. U. Kadam, K. E. Cogburn, Y. Hua, X. Dai, R. L. Stanfield, D. R. Burton, A. B. Ward, I. A. Wilson, M. Law, “Hepatitis C virus E2 envelope glycoprotein core structure”, Science, 342:6162 (2013), 1090–1094 | DOI | DOI

[43] M. O. Dobrica, A. van Eerde, C. Tucureanu, A. Onu, L. Paruch, I. Caras, E. Vlase, H. Steen, S. Haugslien, D. Alonzi et al, “Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus-neutralizing activity in vaccinated mice”, Plant Biotechnol. J., 19:10 (2021), 2027–2039 | DOI | DOI

[44] W. Zhong, A. S. Uss, E. Ferrari, J. Y. Lau, Z. Hong, “De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase”, J. Virol, 74:4 (2000), 2017–2022 | DOI | DOI

[45] L. He, N. Tzarum, X. Lin, B. Shapero, C. Sou, C. J. Mann, A. Stano, L. Zhang, K. Nagy, E. Giang et al, “Proof of concept for rational design of hepatitis C virus E2 core nanoparticle vaccines”, Sci. Adv, 6:16 (2020), eaaz6225 | DOI | DOI

[46] Y. Shirasago, H. Fukazawa, S. Nagase, Y. Shimizu, T. Mizukami, T. Wakita, T. Suzuki, H. Tani, M. Kondoh, T. Kuroda et al, “A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection”, Sci. Rep, 12:1 (2022), 20243 | DOI | DOI

[47] E. G. Cormier, R. J. Durso, F. Tsamis, L. Boussemart, C. Manix, W. C. Olson, J. P. Gardner, T. Dragic, “L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus”, Proc. Natl. Acad. Sci. USA, 101:39 (2004), 14067–14072 | DOI | DOI

[48] N. N.T. Nguyen, Y. S. Lim, L. P. Nguyen, S. C. Tran, T. T.D. Luong, T. T.T. Nguyen, H. T. Pham, H. N. Mai, J. W. Choi, S. S. Han et al, “Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation”, Sci. Rep, 8:1 (2018), 15486 | DOI | DOI

[49] J. Lyu, H. Imachi, K. Fukunaga, T. Yoshimoto, H. Zhang, K. Murao, “Roles of lipoprotein receptors in the entry of hepatitis C virus”, World J. Hepatol, 7:24 (2015), 2535–2542 | DOI | DOI