Modeling growth and photoadaptation of \emph{Porphyridium purpureum} batch culture
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 169-182

Voir la notice de l'article provenant de la source Math-Net.Ru

The work focuses on mathematical modeling of linear growth marine red algae Porphyridium purpureum batch culture under various surface irradiation. Before starting the batch culture P. purpureum was maintained for 3–5 days in turbidostat, which allowed the culture to adapt to a given light intensity. On each batch curve the maximum specific growth rate and maximum productivity are determined by approximating the exponential and linear growth phases with the appropriate equations. It is taken into account that at the beginning of the linear growth phase the integral light absorption coefficient, calculated from the true absorption spectrum in PAR range, exceeded 50%. It is shown that with light intensity increase from 15 to 227 $\mu$mol photons m$^{-2}$ $\cdot$ s$^{-1}$ the maximum specific growth rate increased from 0.31 to 1 day$^{-1}$, the maximum productivity increased from 1.32 to 16.38 g DW m$^{-2}$ $\cdot$ day$^{-1}$. Mathematical modeling of the linear growth of P. purpureum batch culture have showed that at any light intensity the specific growth rate is determined by the surface illumination, the light absorption coefficient and chlorophyll $a$ concentration. The concept of reduced irradiation – the amount of absorbed light energy per chlorophyll $a$ – was introduced. A linear dependence of the specific growth rate on reduced irradiation is given. The tangent of the angle of line slope is determined by the organization of the key multi- enzyme complex (“metabolism bottleneck”). Parameters of this complex depend on the cells photoadaptation degree. For the first time a quantitative relationship between multi-enzyme complex parameters, light intensity and the chlorophyll/P700 ratio was established.
@article{MBB_2024_19_1_a9,
     author = {A. S. Lelekov and V. S. Klochkova},
     title = {Modeling growth and photoadaptation of {\emph{Porphyridium} purpureum} batch culture},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a9/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - V. S. Klochkova
TI  - Modeling growth and photoadaptation of \emph{Porphyridium purpureum} batch culture
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 169
EP  - 182
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a9/
LA  - ru
ID  - MBB_2024_19_1_a9
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A V. S. Klochkova
%T Modeling growth and photoadaptation of \emph{Porphyridium purpureum} batch culture
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 169-182
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a9/
%G ru
%F MBB_2024_19_1_a9
A. S. Lelekov; V. S. Klochkova. Modeling growth and photoadaptation of \emph{Porphyridium purpureum} batch culture. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 169-182. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a9/

[1] R. G. Gevorgiz, A. S. Lelekov, O. N. Korol, “Modelirovanie dinamiki rosta populyatsii mikroorganizmov v nakopitelnoi kulture”, Zakrytaya sistema. Rybnoe khozyaistvo Ukrainy, 5 (2013), 6–15

[2] T. Naumann, Z. Cebi, B. Podola, M. Melkonian, “Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor”, J. Appl. Phycol, 25 (2013), 1413–1420 | DOI | DOI

[3] D. Dermoun, D. Chaumont, J. M. Thebault, A. Dauta, “Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: light and temperature”, Biores. technol, 42:2 (1992), 113–117 | DOI | DOI

[4] M. Akimoto, A. Shirai, K. Ohtaguchi, K. Koide, “Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum”, Appl. Biochem. Biotechnol, 73 (1998), 269–278 | DOI | DOI

[5] G. Yu. Riznichenko, A. B. Rubin, Dinamicheskie modeli elektronnogo transporta v fotosinteze, Izd-vo Instituta kompyuternykh issledovanii, M., 2020, 331 pp.

[6] Ermakov I. P. (red.), Fiziologiya rastenii, Uch. dlya stud. vuzov, Izd-vo «Akademiya», M., 2005, 640 pp.

[7] F. X. Cunningham, R. J. Dennenberg, L. Mustardy, P. A. Jursinic, E. Gantt, “Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance”, Plant Physiol, 91:3 (1989), 1179–1187 | DOI | DOI

[8] A. B. Borovkov, I. N. Gudvilovich, T. M. Novikova, E. V. Klimova, “Produktsionnye kharakteristiki poluprotochnoi kultury Porphyridium purpureum (Bory) Drew et Ross pri nizkoi osveschennosti”, Morskoi biologicheskii zhurnal, 7:1 (2022), 3–13 | DOI | DOI

[9] R. P. Trenkenshu, “Rost mikrovodoroslei pri perekhode ot temnoty k postoyannomu osvescheniyu”, Voprosy sovremennoi algologii, 2018, no. 2 (data obrascheniya: 02.05.2024) http://algology.ru/1350

[10] O. S. Palamodova, “Dinamika fotoadaptatsii nekotorykh vidov diatomovykh vodoroslei”, Ekologiya morya, 78 (2009), 70–74

[11] T. Anning, H. L. MacIntyre, S. M. Pratt, P. J. Sammes, S. Gibb, R. J. Geider, “Photoacclimation in the marine diatom Skeletonema costatum”, Limnol. Oceanogr, 45:8 (2000), 1807–1817 | DOI | DOI

[12] S. Tan, G. R. Wolfe, F. X. Cunningham, E. Gantt, “Decrease of polypeptides in the PS I antenna complex with increasing growth irradiance in the red alga Porphyridium cruentum”, Photosyn. Res, 45 (1995), 1–10 | DOI | DOI

[13] M. Mitra, A. Melis, “Optical properties of microalgae for enhanced biofuels production”, Optics Express, 16 (2008), 21807–21820 | DOI | DOI

[14] Minagawa J., “The Chlamydomonas sourcebook. Light-harvesting proteins”, Biology, Environmental Science, 2 (2009), 503–539 | DOI | DOI

[15] S. Jansson, “Light-harvesting complex I and II: pigments and proteins”, Encyclopedia of Biol. Chem, 2013, 726–728 | DOI | DOI

[16] J. Dumay, “Proteins and pigments”, Seaweed in health and disease prevention, 2016, 275–318 | DOI | DOI

[17] Y. Fang, D. Liu, J. Jiang, A. He, R. Zhu, L. Tian, “Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center”, J. Biol. Chem, 298:4 (2022) | DOI | Zbl | DOI | Zbl

[18] E. N. Zavorueva, V. V. Zavoruev, S. P. Krum, Labilnost pervoi fotosistemy fototrofov v razlichnykh usloviyakh okruzhayuschei sredy, Sibirskii federalnyi universitet, Krasnoyarsk, 2011, 152 pp.

[19] R. P. Trenkenshu, A. S. Lelekov, T. M. Novikova, “Lineinyi rost morskikh mikrovodoroslei v kulture”, Morskoi biologicheskii zhurnal, 3:1 (2018), 53–60

[20] A. S. Lelekov, D. N. Chernyshev, V. S. Klochkova, “Kolichestvennye zakonomernosti rosta nakopitelnoi kultury Arthrospira platensis”, Matematicheskaya biologiya i bioinformatika, 17:1 (2022), 156–170 | DOI | DOI

[21] R. P. Trenkenshu, A. S. Lelekov, A. B. Borovkov, T. M. Novikova, “Unifitsirovannaya ustanovka dlya laboratornykh issledovanii mikrovodoroslei”, Voprosy sovremennoi algologii, 2017, no. 1 (data obrascheniya: 20.03.2024) http://algology.ru/1097

[22] R. P. Trenkenshu, V. N. Belyanin, “Vliyanie elementov mineralnogo pitaniya na produktivnost vodorosli Platymonas viridis”, Biologiya morya, 51 (1979), 41–46

[23] M. N. Merzlyak, K. R. Naqvi, “On recording the true absorption and scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium anabaena variabilis”, J. Photochem. Photobiol. B: Biology, 58 (2000), 123–129 | DOI | DOI

[24] D. N. Chernyshev, V. S. Klochkova, A. S. Lelekov, “Razdelenie spektra pogloscheniya kultury Porphyridium purpureum (Bory) Ross”, v krasnoi oblasti. Voprosy sovremennoi algologii, 2022, no. 1, 25–34 | DOI | DOI

[25] I. G. Minkevich, P. V. Fursova, L. D. Tjorlova, A. A. Tsygankov, G. Yu. Riznichenko, “The stoichiometry and energetics of oxygenic phototrophic growth”, Photosyn. Res, 116 (2013), 55–78 | DOI | DOI

[26] S. Edmundson, M. Huesemann, “The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp”, Algal Res, 12 (2015), 470–476 | DOI | DOI

[27] F. Abiusi, R. H. Wijffels, M. Janssen, “Oxygen balanced mixotrophy under day-night cycles”, ACS Sustainable Chem. Eng, 8:31 (2020), 11682–11691 | DOI | DOI

[28] S. Yu. Gorbunova, A. L. Avsiyan, “Diurnal dynamics of green microalga Tetraselmis viridis culture density in open pond monitored by optical density sensor”, Biores. Technol. Rep, 20 (2022) | DOI | DOI

[29] M. Kobayashi, T. Watanabe, M. Nakazato, I. Ikegami, T. Hiyama, T. Matsunaga, N. Murata, “Chlorophyll a'/P-700 and pheophytin a/P-680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis”, Bioch. Bioph. Acta - Bioenergetics, 936:1 (1988), 81–89 | DOI | DOI

[30] R. G. Barlow, M. Gosselin, L. Legendre, J. C. Therriault, S. Demers, R. F.C. Mantoura, C. A. Llewellyn, “Photoadaptive strategies in sea-ice microalgae”, Mar. Ecol. Prog. Ser, 45 (1988), 145–152 | DOI | DOI

[31] J. E. Yarnold, Photosynthesis of microalgae in outdoor mass cultures and modelling its effects on biomass productivity for fuels, feeds and chemicals, PhD Thesis, Institute for Molecular Bioscience, The University of Queensland, 2016, 178 pp. | DOI | DOI

[32] Y. Wang, Z. Zhong, S. Qin, J. Li, J. Li, Z. Liu, “Effects of temperature and light on growth rate and photosynthetic characteristics of Sargassum horneri”, J. Ocean Univ. China, 20 (2021), 101–110 | DOI | DOI

[33] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Novosibirsk, 1980, 136 pp.

[34] Yu. Saxena, P. Padmnabhan, “Improvements in conventional modeling practices for effective simulation and understanding of microalgal growth in photobioreactors: an experimental study”, Biotech. Bioproc. Eng., 2021 | DOI | DOI

[35] R. P. Trenkenshu, Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.

[36] P. G. Falkowski, T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton”, Plant Physiol, 66 (1980), 592–595 | DOI | DOI

[37] F. Pniewski, I. Piasecka-Jedrzejak, “Photoacclimation to constant and changing light conditions a benthic diatom”, Front. Mar. Sci., 7 (2020) | DOI | DOI

[38] B. M. Smith, P. J. Morrissey, J. E. Guenther, J. A. Nemson, M. A. Harrison, J. F. Allen, A. Melis, “Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress”, Plant Physiol, 93:4 (1990), 1433–1440 | DOI | DOI