Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a8, author = {N. V. Pertsev and G. A. Bocharov and K. K. Loginov}, title = {Mathematical modeling of the initial period of spread of {HIV-1} infection in the lymphatic node}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {112--154}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/} }
TY - JOUR AU - N. V. Pertsev AU - G. A. Bocharov AU - K. K. Loginov TI - Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 112 EP - 154 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/ LA - ru ID - MBB_2024_19_1_a8 ER -
%0 Journal Article %A N. V. Pertsev %A G. A. Bocharov %A K. K. Loginov %T Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 112-154 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/ %G ru %F MBB_2024_19_1_a8
N. V. Pertsev; G. A. Bocharov; K. K. Loginov. Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 112-154. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/
[1] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, “Human Immunodeficiency Virus Infection: From Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom, 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl
[2] V. A. Chereshnev, G. A. Bocharov, A. V. Kim, S. I. Bazhan, I. A. Gainova, A. N. Krasovskii, N. G. Shmagel, A. V. Ivanov, M. A. Safronov, R. M. Tretyakova, Vvedenie v zadachi modelirovaniya i upravleniya dinamikoi VICh infektsii, Institut kompyuternykh issledovanii, M. Izhevsk, 2016, 230 pp. | MR | MR
[3] H. T. Banks, D. M. Bortz, “A parameter sensitivity methodology in the context of HIV delay equation models”, J. Math. Biol, 50 (2005), 607–625 | DOI | MR | Zbl | DOI | MR | Zbl
[4] K. A. Pawelek, S. Liu, F. Pahlevani, L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci, 235:1 (2012), 98–109 | DOI | MR | Zbl | DOI | MR | Zbl
[5] M. Pitchaimani, C. Monica, “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput, 48 (2015), 293–319 | DOI | MR | Zbl | DOI | MR | Zbl
[6] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Disc. Cont. Dyn. Syst. Series, 13:9, 2365–2384, 2020 | DOI | MR | Zbl | DOI | MR | Zbl
[7] A. K. Abbas, Likhtman E.G., Pillai Sh., Osnovy immunologii. Funktsii immunnoi sistemy i ikh narusheniya, Geotar-Media, M., 2022, 404 pp.
[8] Q. J. Sattentau, M. Stevenson, “Macrophages and HIV-1: An Unhealthy Constellation”, Cell Host Microbe, 19:3 (2016), 304–310 | DOI | DOI
[9] Y. Dimopoulos, E. Moysi, C. Petrovas, “The Lymph Node in HIV Pathogenesis”, Curr. HIV/AIDS Rep, 14 (2017), 133–140 | DOI | DOI
[10] N. V. Pertsev, G. A. Bocharov, K. K. Loginov, “Numerical Simulation of T-Lymphocyte Population Dynamics in a Lymph Node”, J. Appl. Ind. Math, 16:4 (2022), 737–750 | DOI | MR | Zbl | DOI | MR | Zbl
[11] N. V. Pertsev, “Global Solvability and Estimates of Solutions to the Cauchy Problem for the Retarded Functional Differential Equations That Are Used to Model Living Systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 | DOI | MR | Zbl | DOI | MR | Zbl
[12] N. V. Pertsev, “Some Properties of Solutions to a Family of Integral Equations Arising in the Models of Living Systems”, Siberian Mathematical Journal, 58 (2017), 525–535 | DOI | MR | Zbl | DOI | MR | Zbl
[13] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR | MR
[14] KolmanovskiiV. B., NosovV. R., Ustoichivosti periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp. | MR | MR
[15] H. E. Taylor, C. S. Palmer, “CD4 T Cell Metabolism Is a Major Contributor of HIV Infectivity and Reservoir Persistence”, Immunometabolism, 2:1 (2020), e200005 | DOI | DOI
[16] N. V. Pertsev, “Stability of Linear Delay Differential Equations Arising in Models of Living Systems”, Sib. Adv. Math, 30:1 (2020), 43–54 | DOI | MR | DOI | MR
[17] N. V. Pertsev, B. Y. Pichugin, A. N. Pichugina, “Application of M-Matrices in Studies of Mathematical Models of Living Systems”, Mathematical Biology and Bioinformatics, 18:S (2018), t104-t131 | DOI | DOI
[18] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 316 pp. | MR | Zbl | MR | Zbl
[19] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | MR
[20] F. R. Gantmakher, Teoriya matrits, 2-izd., Nauka, M., 1966, 576 pp. | MR | MR
[21] N. V. Pertsev, B. Y. Pichugin, K. K. Loginov, “Stochastic Analog of the Dynamic Model of HIV-1Infection Described by Delay Differential Equations”, J.Appl. Ind. Math, 13:1 (2019), 103–117 | DOI | MR | Zbl | DOI | MR | Zbl
[22] G. I. Marchuk, Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, 3-izd., Nauka, M., 1991, 300 pp. | MR | MR
[23] G. A. Bocharov, G. I. Marchuk, “Prikladnye problemy matematicheskogo modelirovaniya v immunologii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:12 (2000), 1905–1920 | MR | Zbl | MR | Zbl