Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 112-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model describing the initial period of spread of HIV-1 infection in a single lymphatic node of an infected individual is presented. The model variables are the quantity of viral particles, CD4+ T-lymphocytes, and antigen-presenting cells. To build the model, a high-dimensional system of differential equations with delay, supplemented initial data, is used. Some of the model equations take into account intermediate stages of development of viral particles and cells involved in the infectious process. The existence, uniqueness and non-negativity of the components of the model solutions on the semi-axis for non-negative initial data are established. Conditions for the asymptotic stability of the equilibrium state interpreted as the absence of HIV-1 infection in the lymphatic node are obtained. To solve the model numerically, a semi-implicit Euler scheme is used. The conditions for the attenuation of HIV-1 infection in the lymphatic node and the beginning of the systemic spread of infection throughout the organism of an infected individual are analyzed analytically and numerically.
@article{MBB_2024_19_1_a8,
     author = {N. V. Pertsev and G. A. Bocharov and K. K. Loginov},
     title = {Mathematical modeling of the initial period of spread of {HIV-1} infection in the lymphatic node},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {112--154},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - G. A. Bocharov
AU  - K. K. Loginov
TI  - Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 112
EP  - 154
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/
LA  - ru
ID  - MBB_2024_19_1_a8
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A G. A. Bocharov
%A K. K. Loginov
%T Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 112-154
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/
%G ru
%F MBB_2024_19_1_a8
N. V. Pertsev; G. A. Bocharov; K. K. Loginov. Mathematical modeling of the initial period of spread of HIV-1 infection in the lymphatic node. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 112-154. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a8/

[1] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, “Human Immunodeficiency Virus Infection: From Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom, 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl

[2] V. A. Chereshnev, G. A. Bocharov, A. V. Kim, S. I. Bazhan, I. A. Gainova, A. N. Krasovskii, N. G. Shmagel, A. V. Ivanov, M. A. Safronov, R. M. Tretyakova, Vvedenie v zadachi modelirovaniya i upravleniya dinamikoi VICh infektsii, Institut kompyuternykh issledovanii, M. Izhevsk, 2016, 230 pp. | MR | MR

[3] H. T. Banks, D. M. Bortz, “A parameter sensitivity methodology in the context of HIV delay equation models”, J. Math. Biol, 50 (2005), 607–625 | DOI | MR | Zbl | DOI | MR | Zbl

[4] K. A. Pawelek, S. Liu, F. Pahlevani, L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci, 235:1 (2012), 98–109 | DOI | MR | Zbl | DOI | MR | Zbl

[5] M. Pitchaimani, C. Monica, “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput, 48 (2015), 293–319 | DOI | MR | Zbl | DOI | MR | Zbl

[6] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Disc. Cont. Dyn. Syst. Series, 13:9, 2365–2384, 2020 | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. K. Abbas, Likhtman E.G., Pillai Sh., Osnovy immunologii. Funktsii immunnoi sistemy i ikh narusheniya, Geotar-Media, M., 2022, 404 pp.

[8] Q. J. Sattentau, M. Stevenson, “Macrophages and HIV-1: An Unhealthy Constellation”, Cell Host Microbe, 19:3 (2016), 304–310 | DOI | DOI

[9] Y. Dimopoulos, E. Moysi, C. Petrovas, “The Lymph Node in HIV Pathogenesis”, Curr. HIV/AIDS Rep, 14 (2017), 133–140 | DOI | DOI

[10] N. V. Pertsev, G. A. Bocharov, K. K. Loginov, “Numerical Simulation of T-Lymphocyte Population Dynamics in a Lymph Node”, J. Appl. Ind. Math, 16:4 (2022), 737–750 | DOI | MR | Zbl | DOI | MR | Zbl

[11] N. V. Pertsev, “Global Solvability and Estimates of Solutions to the Cauchy Problem for the Retarded Functional Differential Equations That Are Used to Model Living Systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 | DOI | MR | Zbl | DOI | MR | Zbl

[12] N. V. Pertsev, “Some Properties of Solutions to a Family of Integral Equations Arising in the Models of Living Systems”, Siberian Mathematical Journal, 58 (2017), 525–535 | DOI | MR | Zbl | DOI | MR | Zbl

[13] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR | MR

[14] KolmanovskiiV. B., NosovV. R., Ustoichivosti periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp. | MR | MR

[15] H. E. Taylor, C. S. Palmer, “CD4 T Cell Metabolism Is a Major Contributor of HIV Infectivity and Reservoir Persistence”, Immunometabolism, 2:1 (2020), e200005 | DOI | DOI

[16] N. V. Pertsev, “Stability of Linear Delay Differential Equations Arising in Models of Living Systems”, Sib. Adv. Math, 30:1 (2020), 43–54 | DOI | MR | DOI | MR

[17] N. V. Pertsev, B. Y. Pichugin, A. N. Pichugina, “Application of M-Matrices in Studies of Mathematical Models of Living Systems”, Mathematical Biology and Bioinformatics, 18:S (2018), t104-t131 | DOI | DOI

[18] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 316 pp. | MR | Zbl | MR | Zbl

[19] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | MR

[20] F. R. Gantmakher, Teoriya matrits, 2-izd., Nauka, M., 1966, 576 pp. | MR | MR

[21] N. V. Pertsev, B. Y. Pichugin, K. K. Loginov, “Stochastic Analog of the Dynamic Model of HIV-1Infection Described by Delay Differential Equations”, J.Appl. Ind. Math, 13:1 (2019), 103–117 | DOI | MR | Zbl | DOI | MR | Zbl

[22] G. I. Marchuk, Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, 3-izd., Nauka, M., 1991, 300 pp. | MR | MR

[23] G. A. Bocharov, G. I. Marchuk, “Prikladnye problemy matematicheskogo modelirovaniya v immunologii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:12 (2000), 1905–1920 | MR | Zbl | MR | Zbl