Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a7, author = {V. E. Zalizniak and O. A. Zolotov}, title = {Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {96--111}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/} }
TY - JOUR AU - V. E. Zalizniak AU - O. A. Zolotov TI - Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria'' JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 96 EP - 111 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/ LA - ru ID - MBB_2024_19_1_a7 ER -
%0 Journal Article %A V. E. Zalizniak %A O. A. Zolotov %T Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria'' %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 96-111 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/ %G ru %F MBB_2024_19_1_a7
V. E. Zalizniak; O. A. Zolotov. Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 96-111. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/
[1] M. Yu. Saltykov, S. I. Bartsev, Yu. P. Lankin, “Zavisimost ustoichivosti modelei zamknutykh ekosistem ot chisla vidov”, Journal of Siberian Federal University. Biology, 4:2 (2011), 197–208 | DOI | DOI
[2] M. Yu. Saltykov, S. I. Bartsev, Yu. P. Lankin, “Stability of closed ecology life support systems (CELSS) models as dependent upon the properties of methabolism of the described species”, Advances in Space Research, 49 (2012), 223–229 | DOI | DOI
[3] S. Bartsev, A. Degermendzhi, “The evolutionary mechanism of formation of biosphere closure”, Mathematics, 11 (2023), 3218 | DOI | DOI
[4] J. F. Andrews, “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates”, Biotechnology and Bioengineering, 10 (1968), 707–723 | DOI | DOI
[5] S. Takano, B. J. Pawlowska, I. Gudelj, T. Yomo, S. Tsuru, “Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation”, mBio, 8:1 (2017) | DOI | Zbl | DOI | Zbl
[6] V. V. Zelenev, A. H.C. van Bruggen, A. M. Semenov, ““BACWAVE” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil”, Microbial Ecology, 40 (2000), 260–272 | DOI | DOI
[7] C. J. Hulatt, D. N. Thomas, Dissolved organic matter (DOM) in microalgal photobioreactors: A potential loss in solar energy conversion?, Bioresource Technology, 101:22 (2010), 8690–8697 | DOI | DOI
[8] B. G. Kovrov, G. N. Fishtein, “Raspredelenie biomassy v sinteticheskikh zamknutykh mikrobiotsenozakh v zavisimosti ot vidovoi struktury”, Izvestiya SO AN SSSR. Ser. biologicheskaya, 1:5 (1980), 35–40
[9] G. N. Fishtein, Vidovaya struktura zamknutykh mikroekosistem, No 374-dep., VINITI, M., 1981
[10] A. Josephine, T. S. Kumar, B. Surendran, S. Rajakumar, R. Kirubagaran, G. Dharani, “Evaluating the effect of various environmental factors on the growth of the marine microalgae Chlorella vulgaris”, Frontiers in Marine Science, 9 (2022), 954622 | DOI | DOI
[11] Maier R. M., “Bacterial Growth”, Environmental Microbiology, eds. Maier R.M., Pepper I.L., Gerba C.P., Academic Press, 2009, 37–54 | DOI | DOI
[12] M. E. Baird, J. H. Middleton, “On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants”, Journal of Marine Systems, 49 (2004), 169–175 | DOI | DOI
[13] H. R.Jr. Rosser, Elemental composition of Pseudomonas putida under copper stress, Doctoral Dissertations, 1979 (accessed 18.03.2024) https://scholars.unh.edu/dissertation/1258/
[14] P. Halder, A. K. Azad, “Recent trends and challenges of algal biofuel conversion technologies”, Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Woodhead publishing series in energy, eds. Azad A.K., Rasul M., Woodhead Publishing, 2019, 167–179
[15] F. Kuhfuß, V. Gassenmeier, S. Deppe, G. Ifrim, T. H. Rodriguez, B. Frahm, “View on a mechanistic model of Chlorella vulgaris in incubated shake flasks”, Bioprocess and Biosystems Engineering, 45 (2022), 15–30 | DOI | DOI
[16] E. Lee, Q. Zhang, “Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate”, Algal Research, 18 (2016), 15–24 | DOI | DOI
[17] D. J. Kim, J. W. Choi, N. C. Choi, B. Mahendran, C. E. Lee, “Modeling of growth kinetics for Pseudomonas spp. during benzene degradation”, Appl. Microbiol. Biotechnol, 69 (2005), 456–462 | DOI | DOI
[18] M. S.M. Annuar, I. K.P. Tan, S. Ibrahim, K. B. Ramachandran, “Ammonium uptake and growth kinetics of Pseudomonas putida PGA1”, Asia Pacific Journal of Molecular Biology and Biotechnology, 14:1 (2006), 1–10
[19] W. R. Shoemaker, S. E. Jones, M. E. Muscarella, M. G. Behringer, B. K. Lehmkuhl, J. T. Lennon, “Microbial population dynamics and evolution outcomes under extreme energy limitation”, PNAS, 118:33 (2021) | DOI | DOI
[20] M. Seto, Noda M. Growth rate, “biomass production and carbon balance of Pseudomonas aeruginosa at pH extremes in a carbon-limited medium”, Jap. J. Limnol, 43:4 (1982), 263–271 | DOI | DOI
[21] H. W. Kim, S. Park, B. E. Rittmann, “Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803”, Environ. Eng. Res, 20:4 (2015), 347–355 | DOI | MR | DOI | MR
[22] B. Ketheesan, N. Nirmalakhandan, “Modeling microalgal growth in an airlift-driven raceway reactor”, Bioresource Technology, 136 (2013), 689–696 | DOI | DOI
[23] S. Norland, M. Heldal, O. Tumyr, “On the relation between dry matter and volume of bacteria”, Microbial Ecology, 13 (1987), 95–101 | DOI | DOI
[24] M. Li, L. Gao, L. Lin, “Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation”, Ann. Limnol. Int. J. Lim, 51 (2015), 329–334 | DOI | DOI