Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 96-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Model of closed microecosystem “algae – heterotrophic bacteria” is proposed in this paper. Mathematical model is the Cauchy problem for system of nonlinear ordinary differential equations. To develop the model the Liebig’s law of the minimum is consistently used for both specific rate of biomass growth and specific death rate of algae and bacteria cells. To describe the specific rate of substrate utilization by algae and bacteria the Andrew’s model (substrate inhibition) is used. It is assumed that specific death rate of algae and bacteria cells increases with decreasing substrate concentration. It is also assumed that carbon and nitrogen are main biogenic elements, and in the system they are in the form of mineral substrate (CO$_2$, NO$_2$, NO$_3$, NH$_4$) and biological substrate (proteins, lipids and carbohydrates). Mathematical model describing time variations in concentration of elements of microecosystem is formulated under the following assumptions: 1) stoichiometric coefficients of algae and bacteria cells are constant in the development of microecosystem; 2) utilization of carbon and nitrogen by algae and bacteria occurs independently; 3) oxygen produced by algae cells during photosynthesis completely covers the demand for oxygen for algae and bacteria cells. To verify the proposed model experimental data for microecosystems “Clorella vulgaris – Pseudomonas sp.” Рё “Scenedesmus obliquus – Pseudomonas sp.” are used. These systems were studied in laboratory conditions, and concentrations of elements of microecosystems in stationary state were obtained. Parameters of functions describing specific rate of utilization of biogenic elements were derived from experimental data for growth kinetics of algae and bacteria. Concentration of the biomass in stationary state obtained with the use of the proposed model is in reasonable agreement with experimental data.
@article{MBB_2024_19_1_a7,
     author = {V. E. Zalizniak and O. A. Zolotov},
     title = {Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {96--111},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/}
}
TY  - JOUR
AU  - V. E. Zalizniak
AU  - O. A. Zolotov
TI  - Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 96
EP  - 111
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/
LA  - ru
ID  - MBB_2024_19_1_a7
ER  - 
%0 Journal Article
%A V. E. Zalizniak
%A O. A. Zolotov
%T Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 96-111
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/
%G ru
%F MBB_2024_19_1_a7
V. E. Zalizniak; O. A. Zolotov. Mathematical model of closed microecosystem ``algae -- heterotrophic bacteria''. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 96-111. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a7/

[1] M. Yu. Saltykov, S. I. Bartsev, Yu. P. Lankin, “Zavisimost ustoichivosti modelei zamknutykh ekosistem ot chisla vidov”, Journal of Siberian Federal University. Biology, 4:2 (2011), 197–208 | DOI | DOI

[2] M. Yu. Saltykov, S. I. Bartsev, Yu. P. Lankin, “Stability of closed ecology life support systems (CELSS) models as dependent upon the properties of methabolism of the described species”, Advances in Space Research, 49 (2012), 223–229 | DOI | DOI

[3] S. Bartsev, A. Degermendzhi, “The evolutionary mechanism of formation of biosphere closure”, Mathematics, 11 (2023), 3218 | DOI | DOI

[4] J. F. Andrews, “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates”, Biotechnology and Bioengineering, 10 (1968), 707–723 | DOI | DOI

[5] S. Takano, B. J. Pawlowska, I. Gudelj, T. Yomo, S. Tsuru, “Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation”, mBio, 8:1 (2017) | DOI | Zbl | DOI | Zbl

[6] V. V. Zelenev, A. H.C. van Bruggen, A. M. Semenov, ““BACWAVE” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil”, Microbial Ecology, 40 (2000), 260–272 | DOI | DOI

[7] C. J. Hulatt, D. N. Thomas, Dissolved organic matter (DOM) in microalgal photobioreactors: A potential loss in solar energy conversion?, Bioresource Technology, 101:22 (2010), 8690–8697 | DOI | DOI

[8] B. G. Kovrov, G. N. Fishtein, “Raspredelenie biomassy v sinteticheskikh zamknutykh mikrobiotsenozakh v zavisimosti ot vidovoi struktury”, Izvestiya SO AN SSSR. Ser. biologicheskaya, 1:5 (1980), 35–40

[9] G. N. Fishtein, Vidovaya struktura zamknutykh mikroekosistem, No 374-dep., VINITI, M., 1981

[10] A. Josephine, T. S. Kumar, B. Surendran, S. Rajakumar, R. Kirubagaran, G. Dharani, “Evaluating the effect of various environmental factors on the growth of the marine microalgae Chlorella vulgaris”, Frontiers in Marine Science, 9 (2022), 954622 | DOI | DOI

[11] Maier R. M., “Bacterial Growth”, Environmental Microbiology, eds. Maier R.M., Pepper I.L., Gerba C.P., Academic Press, 2009, 37–54 | DOI | DOI

[12] M. E. Baird, J. H. Middleton, “On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants”, Journal of Marine Systems, 49 (2004), 169–175 | DOI | DOI

[13] H. R.Jr. Rosser, Elemental composition of Pseudomonas putida under copper stress, Doctoral Dissertations, 1979 (accessed 18.03.2024) https://scholars.unh.edu/dissertation/1258/

[14] P. Halder, A. K. Azad, “Recent trends and challenges of algal biofuel conversion technologies”, Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Woodhead publishing series in energy, eds. Azad A.K., Rasul M., Woodhead Publishing, 2019, 167–179

[15] F. Kuhfuß, V. Gassenmeier, S. Deppe, G. Ifrim, T. H. Rodriguez, B. Frahm, “View on a mechanistic model of Chlorella vulgaris in incubated shake flasks”, Bioprocess and Biosystems Engineering, 45 (2022), 15–30 | DOI | DOI

[16] E. Lee, Q. Zhang, “Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate”, Algal Research, 18 (2016), 15–24 | DOI | DOI

[17] D. J. Kim, J. W. Choi, N. C. Choi, B. Mahendran, C. E. Lee, “Modeling of growth kinetics for Pseudomonas spp. during benzene degradation”, Appl. Microbiol. Biotechnol, 69 (2005), 456–462 | DOI | DOI

[18] M. S.M. Annuar, I. K.P. Tan, S. Ibrahim, K. B. Ramachandran, “Ammonium uptake and growth kinetics of Pseudomonas putida PGA1”, Asia Pacific Journal of Molecular Biology and Biotechnology, 14:1 (2006), 1–10

[19] W. R. Shoemaker, S. E. Jones, M. E. Muscarella, M. G. Behringer, B. K. Lehmkuhl, J. T. Lennon, “Microbial population dynamics and evolution outcomes under extreme energy limitation”, PNAS, 118:33 (2021) | DOI | DOI

[20] M. Seto, Noda M. Growth rate, “biomass production and carbon balance of Pseudomonas aeruginosa at pH extremes in a carbon-limited medium”, Jap. J. Limnol, 43:4 (1982), 263–271 | DOI | DOI

[21] H. W. Kim, S. Park, B. E. Rittmann, “Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803”, Environ. Eng. Res, 20:4 (2015), 347–355 | DOI | MR | DOI | MR

[22] B. Ketheesan, N. Nirmalakhandan, “Modeling microalgal growth in an airlift-driven raceway reactor”, Bioresource Technology, 136 (2013), 689–696 | DOI | DOI

[23] S. Norland, M. Heldal, O. Tumyr, “On the relation between dry matter and volume of bacteria”, Microbial Ecology, 13 (1987), 95–101 | DOI | DOI

[24] M. Li, L. Gao, L. Lin, “Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation”, Ann. Limnol. Int. J. Lim, 51 (2015), 329–334 | DOI | DOI