Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a6, author = {Nikolaos Gkrekas}, title = {Applying {Laplace} transformation on epidemiological models as {Caputo} derivatives}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {61--76}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/} }
TY - JOUR AU - Nikolaos Gkrekas TI - Applying Laplace transformation on epidemiological models as Caputo derivatives JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 61 EP - 76 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/ LA - en ID - MBB_2024_19_1_a6 ER -
Nikolaos Gkrekas. Applying Laplace transformation on epidemiological models as Caputo derivatives. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/
[1] F. Minardi, “Fractional Calculus: Theory and Applications”, Mathematics, 6 (2018) | DOI | DOI
[2] K. S. Miller, B. Ross, AnIntroduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | MR
[3] N. H. Abel, “Oplosning af et par opgaver ved hjelp af bestemte integraler”, Magazin for Naturvidenskaberne, I:2 (1823), 55–68 (In Danish)
[4] M. Caputo, “Linear Models of Dissipation whose Q is almost Frequency Independent-II”, Geophysical Journal International, 13:5 (1967), 529–539 | DOI | DOI
[5] N. Sene, “Numerical methods applied to a class of SEIR epidemic models described by the Caputo derivative”, Methods of Mathematical Modeling. Infectious Diseases, eds. H. Singh, H. M. Srivastava, D. Baleanu, Academic Press, 2022, 23–40 | DOI | DOI
[6] M. Caputo, M. Fabrizio, “On the notion of fractional derivative and applications to the hysteresis phenomena”, Meccanica, 52 (2017), 3043–3052 | DOI | MR | Zbl | DOI | MR | Zbl
[7] S. Rezapour, H. Mohammadi, A. Jajarmi, “A New Mathematical Model for Zika Virus Transmission”, Advances in Difference Equations, 2020, 589(220) | DOI | MR | Zbl | DOI | MR | Zbl
[8] Debbouche N., Ouannas A., Batiha I. M., G. Grassi, “Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives”, Nonlinear Dynamics, 109 (2022), 33–45 | DOI | DOI
[9] A. Ouannas A. Abbes, N. Shawagfeh, H. Jahanshahi, “The fractional-order discrete COVID-19 pandemic model: stability and chaos”, Nonlinear Dynamics, 111 (2023), 965–983 | DOI | DOI
[10] O. Tunc, C. Tunc, “Solution estimates to Caputo proportional fractional derivative delay integro-differential equations”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 117 (2023), 12 | DOI | MR | Zbl | DOI | MR | Zbl
[11] H. W. Hethcote, “Three Basic Epidemiological Models”, Applied Mathematical Ecology, Biomathematics Series, 18, eds. Levin S.A., Hallam T.G., Gross L.J., Springer, Berlin, 1989 | DOI | MR | DOI | MR
[12] R. Ross, “An application of the theory of probabilities to the study of a priori pathometry, Part I”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 92:638 (1916), 204–230
[13] R. Ross, H. Hudson, “An application of the theory of probabilities to the study of a priori pathometry, Part II”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 93:650 (1917), 212–225
[14] R. Ross, H. Hudson, “An application of the theory of probabilities to the study of a priori pathometry, Part III”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 89:621 (1917), 225–240
[15] Kermack W. O., McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721
[16] D. G. Kendall, “Deterministic and stochastic epidemics in closed populations”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability: Contributions to Biology and Problems of Health, 4 (1956), 149–165 | MR | Zbl | MR | Zbl
[17] Engelmann L., “A box, a trough and marbles: How the Reed-Frost epidemic theory shaped epidemiological reasoning in the 20th century”, History and Philosophy of the Life Sciences, 43 (2021), 105 | DOI | DOI
[18] D. Baleanu, S. E. Aydogn, H. Mohammadi, S. Rezapour, “On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method”, Alexandria Engineering Journal, 59:5 (2020), 3029–3039 | DOI | DOI
[19] H. Aghdaoui, M. Tilioua, K. S. Nissar, I. Khan, “A Fractional Epidemic Model with Mittag-Leffler Kernel for COVID-19”, Mathematical Biology and Bioinformatics, 16:1 (2021), 39–56 | DOI | DOI
[20] F. Dablander, Infectious diseases and nonlinear differential equations, 2020 (accessed 22.03.2024) https://fabiandablander.com/r/Nonlinear-Infection.html
[21] Dobrushkin V., Gourley R., “The Laplace Transform”, Brown University Applied Mathematics, 2016 (accessed 22.03.2024) https://www.cfm.brown.edu/people/dobrush/am33/MuPad/MuPad9.html
[22] F. Jarad, T. Abdeljawad, “Generalized fractional derivatives and Laplace transform”, Discrete and Continuous Dynamical Systems, 13:3 (2020), 709–722 | DOI | MR | Zbl | DOI | MR | Zbl
[23] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993 | MR | Zbl | MR | Zbl
[24] Y. Luchko, “Fractional Derivatives and the Fundamental Theorem of Fractional Calculus”, Fractional Calculus and Applied Analysis, 23 (2020), 939–966 | DOI | MR | Zbl | DOI | MR | Zbl