Applying Laplace transformation on epidemiological models as Caputo derivatives
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 61-76

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper delves into the application of fractional calculus, with a focus on Caputo derivatives, in epidemiological models using ordinary differential equations. It highlights the critical role Caputo derivatives play in modeling intricate systems with memory effects and assesses various epidemiological models, including SIR variants, demonstrating how Caputo derivatives capture fractional-order dynamics and memory phenomena found in real epidemics. The study showcases the utility of Laplace transformations for analyzing systems described by ordinary differential equations (ODEs) with Caputo derivatives. This approach facilitates both analytical and numerical methods for system analysis and parameter estimation. Additionally, the paper introduces a tabular representation for epidemiological models, enabling a visual and analytical exploration of variable relationships and dynamics. This matrix-based framework permits the application of linear algebra techniques to assess stability and equilibrium points, yielding valuable insights into long-term behavior and control strategies. In summary, this research underscores the significance of Caputo derivatives, Laplace transformations, and matrix representation in epidemiological modeling. We assume that by using this type of methodology we can get analytic solutions by hand when considering a function as constant in certain cases and it will not be necessary to search for numerical methods.
@article{MBB_2024_19_1_a6,
     author = {Nikolaos Gkrekas},
     title = {Applying {Laplace} transformation on epidemiological models as {Caputo} derivatives},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/}
}
TY  - JOUR
AU  - Nikolaos Gkrekas
TI  - Applying Laplace transformation on epidemiological models as Caputo derivatives
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 61
EP  - 76
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/
LA  - en
ID  - MBB_2024_19_1_a6
ER  - 
%0 Journal Article
%A Nikolaos Gkrekas
%T Applying Laplace transformation on epidemiological models as Caputo derivatives
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 61-76
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/
%G en
%F MBB_2024_19_1_a6
Nikolaos Gkrekas. Applying Laplace transformation on epidemiological models as Caputo derivatives. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a6/

[1] F. Minardi, “Fractional Calculus: Theory and Applications”, Mathematics, 6 (2018) | DOI | DOI

[2] K. S. Miller, B. Ross, AnIntroduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | MR

[3] N. H. Abel, “Oplosning af et par opgaver ved hjelp af bestemte integraler”, Magazin for Naturvidenskaberne, I:2 (1823), 55–68 (In Danish)

[4] M. Caputo, “Linear Models of Dissipation whose Q is almost Frequency Independent-II”, Geophysical Journal International, 13:5 (1967), 529–539 | DOI | DOI

[5] N. Sene, “Numerical methods applied to a class of SEIR epidemic models described by the Caputo derivative”, Methods of Mathematical Modeling. Infectious Diseases, eds. H. Singh, H. M. Srivastava, D. Baleanu, Academic Press, 2022, 23–40 | DOI | DOI

[6] M. Caputo, M. Fabrizio, “On the notion of fractional derivative and applications to the hysteresis phenomena”, Meccanica, 52 (2017), 3043–3052 | DOI | MR | Zbl | DOI | MR | Zbl

[7] S. Rezapour, H. Mohammadi, A. Jajarmi, “A New Mathematical Model for Zika Virus Transmission”, Advances in Difference Equations, 2020, 589(220) | DOI | MR | Zbl | DOI | MR | Zbl

[8] Debbouche N., Ouannas A., Batiha I. M., G. Grassi, “Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives”, Nonlinear Dynamics, 109 (2022), 33–45 | DOI | DOI

[9] A. Ouannas A. Abbes, N. Shawagfeh, H. Jahanshahi, “The fractional-order discrete COVID-19 pandemic model: stability and chaos”, Nonlinear Dynamics, 111 (2023), 965–983 | DOI | DOI

[10] O. Tunc, C. Tunc, “Solution estimates to Caputo proportional fractional derivative delay integro-differential equations”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 117 (2023), 12 | DOI | MR | Zbl | DOI | MR | Zbl

[11] H. W. Hethcote, “Three Basic Epidemiological Models”, Applied Mathematical Ecology, Biomathematics Series, 18, eds. Levin S.A., Hallam T.G., Gross L.J., Springer, Berlin, 1989 | DOI | MR | DOI | MR

[12] R. Ross, “An application of the theory of probabilities to the study of a priori pathometry, Part I”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 92:638 (1916), 204–230

[13] R. Ross, H. Hudson, “An application of the theory of probabilities to the study of a priori pathometry, Part II”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 93:650 (1917), 212–225

[14] R. Ross, H. Hudson, “An application of the theory of probabilities to the study of a priori pathometry, Part III”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 89:621 (1917), 225–240

[15] Kermack W. O., McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721

[16] D. G. Kendall, “Deterministic and stochastic epidemics in closed populations”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability: Contributions to Biology and Problems of Health, 4 (1956), 149–165 | MR | Zbl | MR | Zbl

[17] Engelmann L., “A box, a trough and marbles: How the Reed-Frost epidemic theory shaped epidemiological reasoning in the 20th century”, History and Philosophy of the Life Sciences, 43 (2021), 105 | DOI | DOI

[18] D. Baleanu, S. E. Aydogn, H. Mohammadi, S. Rezapour, “On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method”, Alexandria Engineering Journal, 59:5 (2020), 3029–3039 | DOI | DOI

[19] H. Aghdaoui, M. Tilioua, K. S. Nissar, I. Khan, “A Fractional Epidemic Model with Mittag-Leffler Kernel for COVID-19”, Mathematical Biology and Bioinformatics, 16:1 (2021), 39–56 | DOI | DOI

[20] F. Dablander, Infectious diseases and nonlinear differential equations, 2020 (accessed 22.03.2024) https://fabiandablander.com/r/Nonlinear-Infection.html

[21] Dobrushkin V., Gourley R., “The Laplace Transform”, Brown University Applied Mathematics, 2016 (accessed 22.03.2024) https://www.cfm.brown.edu/people/dobrush/am33/MuPad/MuPad9.html

[22] F. Jarad, T. Abdeljawad, “Generalized fractional derivatives and Laplace transform”, Discrete and Continuous Dynamical Systems, 13:3 (2020), 709–722 | DOI | MR | Zbl | DOI | MR | Zbl

[23] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993 | MR | Zbl | MR | Zbl

[24] Y. Luchko, “Fractional Derivatives and the Fundamental Theorem of Fractional Calculus”, Fractional Calculus and Applied Analysis, 23 (2020), 939–966 | DOI | MR | Zbl | DOI | MR | Zbl