A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 155-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Vitiligo involves the gradual disappearance of melanocytes, causing skin depigmentation. Long noncoding RNAs (lncRNAs), a type of noncoding RNA, are important for regulating inflammation and immunity. Despite this significance, there needs to be more published research on how lncRNAs are expressed in vitiligo cases and their potential roles in the biology of this skin condition. This study aims to elucidate the molecular landscape of vitiligo by analyzing gene expression profiles of vitiligo skin and normal skin. Two datasets, RNA-seq and microarray, were thoroughly investigated to identify differentially expressed (DE) genes and lncRNAs associated with vitiligo development. Functional enrichment analysis revealed biological processes and pathways influenced by dysregulated genes, highlighting intricate processes such as melanin biosynthesis and melanogenesis, shedding light on the complex regulatory networks involved in pigmentation and immune responses. Protein-protein interaction analysis highlighted significantly downregulated hub genes, including TYRP1, MLANA, MC1R, SLC45A2, PAX3, TYR, DCT, OCA2, PMEL, and SOX10, revealing significant functional relationships among identified hub genes within the network. RNA-seq data analysis uncovered DE-lncRNAs, emphasizing the regulatory role of lncRNAs in vitiligo. Moreover, the correlation analysis between the expression of lncRNAs and key genes associated with melanogenesis (OCA2, TYRP1, and PMEL) unveiled novel upregulated lncRNAs such as CRTC3-AS1, LCMT1-AS1, LINC02178 contributing to vitiligo development. Additionally, lncRNA-gene networks constructed based on key melanocyte-related genes provided insights into the molecular relationships relevant to vitiligo. Overall, this study offers a comprehensive understanding of vitiligo pathogenesis, identifying potential therapeutic targets and laying the foundation for future research in this critical area.
@article{MBB_2024_19_1_a5,
     author = {Safa Sadeq Fayez and Ahmed AbdulJabbar Suleiman},
     title = {A bioinformatics analysis for unveiling novel long noncoding {RNAs} and their regulatory impact on key genes associated with vitiligo},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/}
}
TY  - JOUR
AU  - Safa Sadeq Fayez
AU  - Ahmed AbdulJabbar Suleiman
TI  - A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 155
EP  - 168
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/
LA  - en
ID  - MBB_2024_19_1_a5
ER  - 
%0 Journal Article
%A Safa Sadeq Fayez
%A Ahmed AbdulJabbar Suleiman
%T A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 155-168
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/
%G en
%F MBB_2024_19_1_a5
Safa Sadeq Fayez; Ahmed AbdulJabbar Suleiman. A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 155-168. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/

[1] K. Ongenae, N. Van Geel, J. M. Naeyaert, “Evidence for an Autoimmune Pathogenesis of Vitiligo”, Pigment Cell Res, 16:2 (2003), 90–100 | DOI | DOI

[2] T. Hamada, H. F. Sakurane, T. Saito, “Behavior of pigment cells on lesions of the pigmented nevus with vitiligo”, J. Dermatol, 6:3 (1979), 143–152 | DOI | DOI

[3] M. L. Frisoli, K. Essien, J. E. Harris, “Vitiligo: Mechanisms of Pathogenesis and Treatment”, Annu. Rev. Immunol, 38 (2020), 621–648 | DOI | DOI

[4] Y. Zhang, Y. Cai, M. Shi, S. Jiang, S. Cui, Y. Wu, X. H. Gao, H. D. Chen, “The Prevalence of Vitiligo: A Meta-Analysis”, PLoS One, 11:9 (2016), e0163806 | DOI | DOI

[5] C. C.S. de Castro, H. A. Miot, “Prevalence of vitiligo in Brazil-A population survey”, Pigment Cell Melanoma Res, 31:3 (2018), 448–450 | DOI | DOI

[6] C. C.S. de Castro, L. M. do Nascimento, M. Olandoski, M. T. Mira, “A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population”, J. Dermatol. Sci, 65:1 (2012), 63–67 | DOI | MR | DOI | MR

[7] H. Z. Marchioro, C. C. Silva de Castro, V. M. Fava, P. H. Sakiyama, G. Dellatorre, H. A. Miot, “Update on the pathogenesis of vitiligo”, An. Bras. Dermatol, 97:4 (2022), 478–490 | DOI | DOI

[8] R. Spizzo, M. I. Almeida, A. Colombatti, G. A. Calin, Long non-coding RNAs and cancer: a new frontier of translational research?, Oncogene, 31 (2012), 4577–4587 | DOI | DOI

[9] S. S. Fayez, S. M. Mishlish, H. M. Saied, S. A. Shaban, A. A. Suleiman, F. Hassan, A. Z. Al-Saffar, J. R. Al-Obaidi, “Role of Different Types of miRNAs in Some Cardiovascular Diseases and Therapy-Based miRNA Strategies: A Mini Review”, BiomedRes. Int, 2022 | DOI | DOI

[10] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermüller, T.R. Gingeras, “RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription”, Science, 316:5830 (2007), 1484–1488 | DOI | DOI

[11] D. Tian, S. Sun, J. T. Lee, “The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation”, Cell, 143:3 (2010), 390–403 | DOI | DOI

[12] Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., et al., “Long Noncoding RNAs with Enhancer-like Function in Human Cells”, Cell, 143:1 (2010), 46–58 | DOI | DOI

[13] T. Hung, Y. Wang, M. F. Lin, A. K. Koegel, Y. Kotake, G. D. Grant, H. M. Horlings, N. Shah, C. Umbricht, P. Wang et al, “Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters”, Nat. Genet, 43 (2011), 621–629 | DOI | DOI

[14] M. Huarte, M. Guttman, D. Feldser, M. Garber, M. J. Koziol, D. Kenzelmann-Broz, A. M. Khalil, O. Zuk, I. Amit, M. Rabani et al, “A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response”, Cell, 142:3 (2010), 409–419 | DOI | DOI

[15] M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk, B. W. Carey, J. P. Cassady et al, “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals”, Nature, 458 (2009), 223–227 | DOI | DOI

[16] I. Ulitsky, D. P. Bartel, “lincRNAs: Genomics, Evolution and Mechanisms”, Cell, 154:1 (2013), 26–46 | DOI | MR | DOI | MR

[17] T. R. Mercer, M. E. Dinger, J. S. Mattick, “Long non-coding RNAs: insights into functions”, Nat. Rev. Genet, 10 (2009), 155–159 | DOI | DOI

[18] Y. Long, X. Wang, D. T. Youmans, T. R. Cech, How do lncRNAs regulate transcription?, Sci Adv, 3:9 (2017) | DOI | DOI

[19] W. X. Peng, P. Koirala, Y. Y. Mo, “LncRNA-mediated regulation of cell signaling in cancer”, Oncogene, 36 (2017), 5661–5667 | DOI | DOI

[20] Z. Li, X. Li, C. Jiang, W. Qian, G. Tse, M. T.V. Chan, W. K.K. Wu, “Long non-coding RNAs in rheumatoid arthritis”, Cell Prolif, 51:1 (2018), e12404 | DOI | DOI

[21] M. Abbasifard, Z. Kamiab, Z. Bagheri-Hosseinabadi, I. Sadeghi, “The role and function of long non-coding RNAs in osteoarthritis”, Exp. Mol. Pathol, 114 (2020), 104407 | DOI | DOI

[22] L. Tang, Y. Liang, H. Xie, X. Yang, G. Zheng, “Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives”, Cell Prolif, 53:1 (2020), e12698 | DOI | MR | DOI | MR

[23] S. Li, H. Zeng, J. Huang, J. Lu, J. Chen, Y. Zhou, L. Mi, X. Zhao, L. Lei, Q. Zeng, “Identification of the Competing Endogenous RNA Networks in Oxidative Stress Iniury of Melanocytes”, DNA Cell Biol, 40:2 (2021), 192–208 | DOI | DOI

[24] D. Li, L. Liu, X. He, N. Wang, R. Sun, X. Li, T. Yu, X. Chu, “Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects”, Life Sci, 330 (2023), 122006 | DOI | DOI

[25] E. Clough, T. Barrett, “The Gene Expression Omnibus database”, Methods Mol. Biol, 1418 (2016), 93 | DOI | DOI

[26] Z. Xie, A. Bailey, M. V. Kuleshov, D. J.B. Clarke, J. E. Evangelista, S. L. Jenkins, A. Lachmann, M. L. Woiciechowicz, E. Kropiwnicki, K. M. Jagodnik et al, “Gene Set Knowledge Discovery with Enrichr”, Curr. Protoc, 1:3 (2021), e90 | DOI | MR | DOI | MR

[27] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou et al, “STRING v10: protein-protein interaction networks, integrated over the tree of life”, Nucleic Acids Res., 43:D1 (2015), D447-D452 | DOI | DOI

[28] M. Cario-Andre, C. Pain, Y. Gauthier, A. Tai'eb, “The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis”, Pigment Cell Res, 20:5 (2007), 385–393 | DOI | DOI

[29] R. Yaghoobi, M. Omidian, N. Bagherani, “Vitiligo: A review of the published work”, J. Dermatol, 38:5 (2011), 419–431 | DOI | DOI

[30] X. Yu, Y. Cui, X. Zhu, H. Xu, L. Li, G. Gao, “MicroRNAs: Emerging players in the pathogenesis of vitiligo”, Front. Cell Dev. Biol, 10 (2022), 964982 | DOI | DOI

[31] J. Guo, Q. Gan, C. Gan, X. Zhang, X. Ma, M. Dong, “LncRNA MIR205HG regulates melanomagenesis via the miR-299-3p/VEGFA axis”, Aging, 13:4 (2021), 5297–5311 | DOI | DOI

[32] X. Hu, H. Kim, T. Rai, P. J. Brennan, G. Trynka, N. Teslovich, K. Slowikowski, W. M. Chen, S. Onengut, C. Baecher-Allan et al, “Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells”, PLos Genet, 10:6 (2014), e1004404 | DOI | DOI

[33] J. Duan, E. N. Greenberg, S. S. Karri, B. Andersen, “The circadian clock and diseases of the skin”, FEBS Lett, 595:19 (2021), 2413–2436 | DOI | DOI

[34] Y. Y. Chen, L. P. Liu, H. Zhou, Y. W. Zheng, Y. M. Li, “Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis”, Cells, 11:13 (2022), 2082 | DOI | DOI

[35] S. Del Bino, C. Duval, F. Bernerd, “Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact”, Int. J. Mol. Sci, 19:9 (2018), 2668 | DOI | DOI

[36] S. Pei, J. Chen, J. Lu, S. Hu, L. Jiang, L. Lei, Y. Ouyang, C. Fu, Y. Ding, S. Li et al, “The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes”, J. Invest. Dermatol., 140:1 (2020), 152–163.e5 | DOI | DOI

[37] M. Alhelf, L. A. Rashed, N. Ragab, M. F. Elmasry, “Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo”, Int. J. Dermatol, 61:2 (2022), 199–207 | DOI | DOI

[38] F. Liu, A. Singh, Z. Yang, A. Garcia, Y. Kong, F. L. Meyskens, “MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells”, Mol. Cancer, 9:1 (2010), 1–12 | DOI | Zbl | DOI | Zbl

[39] K. Pang, Y. Xiao, L. Li, X. Chen, G. Wei, X. Qian, T. Li, Y. Guo, J. Chen, Y. Tang, “LncRNA-mRNA co-expression network revealing the regulatory roles of lncRNAs in melanogenesis in vitiligo”, J. Hum. Genet, 67 (2022), 247–252 | DOI | DOI

[40] J. Du, A. J. Miller, H. R. Widlund, M. A. Horstmann, S. Ramaswamy, D. E. Fisher, “MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma”, Am. J. Pathol, 163:1 (2003), 333–343 | DOI | DOI

[41] J. Yoshizawa, Y. Abe, N. Oiso, K. Fukai, Y. Hozumi, T. Nakamura, T. Narita, T. Motokawa, K. Wakamatsu, S. Ito et al, “Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations”, J. Dermatol, 41:4 (2014), 296–302 | DOI | DOI