Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a5, author = {Safa Sadeq Fayez and Ahmed AbdulJabbar Suleiman}, title = {A bioinformatics analysis for unveiling novel long noncoding {RNAs} and their regulatory impact on key genes associated with vitiligo}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {155--168}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/} }
TY - JOUR AU - Safa Sadeq Fayez AU - Ahmed AbdulJabbar Suleiman TI - A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 155 EP - 168 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/ LA - en ID - MBB_2024_19_1_a5 ER -
%0 Journal Article %A Safa Sadeq Fayez %A Ahmed AbdulJabbar Suleiman %T A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 155-168 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/ %G en %F MBB_2024_19_1_a5
Safa Sadeq Fayez; Ahmed AbdulJabbar Suleiman. A bioinformatics analysis for unveiling novel long noncoding RNAs and their regulatory impact on key genes associated with vitiligo. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 155-168. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a5/
[1] K. Ongenae, N. Van Geel, J. M. Naeyaert, “Evidence for an Autoimmune Pathogenesis of Vitiligo”, Pigment Cell Res, 16:2 (2003), 90–100 | DOI | DOI
[2] T. Hamada, H. F. Sakurane, T. Saito, “Behavior of pigment cells on lesions of the pigmented nevus with vitiligo”, J. Dermatol, 6:3 (1979), 143–152 | DOI | DOI
[3] M. L. Frisoli, K. Essien, J. E. Harris, “Vitiligo: Mechanisms of Pathogenesis and Treatment”, Annu. Rev. Immunol, 38 (2020), 621–648 | DOI | DOI
[4] Y. Zhang, Y. Cai, M. Shi, S. Jiang, S. Cui, Y. Wu, X. H. Gao, H. D. Chen, “The Prevalence of Vitiligo: A Meta-Analysis”, PLoS One, 11:9 (2016), e0163806 | DOI | DOI
[5] C. C.S. de Castro, H. A. Miot, “Prevalence of vitiligo in Brazil-A population survey”, Pigment Cell Melanoma Res, 31:3 (2018), 448–450 | DOI | DOI
[6] C. C.S. de Castro, L. M. do Nascimento, M. Olandoski, M. T. Mira, “A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population”, J. Dermatol. Sci, 65:1 (2012), 63–67 | DOI | MR | DOI | MR
[7] H. Z. Marchioro, C. C. Silva de Castro, V. M. Fava, P. H. Sakiyama, G. Dellatorre, H. A. Miot, “Update on the pathogenesis of vitiligo”, An. Bras. Dermatol, 97:4 (2022), 478–490 | DOI | DOI
[8] R. Spizzo, M. I. Almeida, A. Colombatti, G. A. Calin, Long non-coding RNAs and cancer: a new frontier of translational research?, Oncogene, 31 (2012), 4577–4587 | DOI | DOI
[9] S. S. Fayez, S. M. Mishlish, H. M. Saied, S. A. Shaban, A. A. Suleiman, F. Hassan, A. Z. Al-Saffar, J. R. Al-Obaidi, “Role of Different Types of miRNAs in Some Cardiovascular Diseases and Therapy-Based miRNA Strategies: A Mini Review”, BiomedRes. Int, 2022 | DOI | DOI
[10] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermüller, T.R. Gingeras, “RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription”, Science, 316:5830 (2007), 1484–1488 | DOI | DOI
[11] D. Tian, S. Sun, J. T. Lee, “The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation”, Cell, 143:3 (2010), 390–403 | DOI | DOI
[12] Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., et al., “Long Noncoding RNAs with Enhancer-like Function in Human Cells”, Cell, 143:1 (2010), 46–58 | DOI | DOI
[13] T. Hung, Y. Wang, M. F. Lin, A. K. Koegel, Y. Kotake, G. D. Grant, H. M. Horlings, N. Shah, C. Umbricht, P. Wang et al, “Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters”, Nat. Genet, 43 (2011), 621–629 | DOI | DOI
[14] M. Huarte, M. Guttman, D. Feldser, M. Garber, M. J. Koziol, D. Kenzelmann-Broz, A. M. Khalil, O. Zuk, I. Amit, M. Rabani et al, “A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response”, Cell, 142:3 (2010), 409–419 | DOI | DOI
[15] M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk, B. W. Carey, J. P. Cassady et al, “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals”, Nature, 458 (2009), 223–227 | DOI | DOI
[16] I. Ulitsky, D. P. Bartel, “lincRNAs: Genomics, Evolution and Mechanisms”, Cell, 154:1 (2013), 26–46 | DOI | MR | DOI | MR
[17] T. R. Mercer, M. E. Dinger, J. S. Mattick, “Long non-coding RNAs: insights into functions”, Nat. Rev. Genet, 10 (2009), 155–159 | DOI | DOI
[18] Y. Long, X. Wang, D. T. Youmans, T. R. Cech, How do lncRNAs regulate transcription?, Sci Adv, 3:9 (2017) | DOI | DOI
[19] W. X. Peng, P. Koirala, Y. Y. Mo, “LncRNA-mediated regulation of cell signaling in cancer”, Oncogene, 36 (2017), 5661–5667 | DOI | DOI
[20] Z. Li, X. Li, C. Jiang, W. Qian, G. Tse, M. T.V. Chan, W. K.K. Wu, “Long non-coding RNAs in rheumatoid arthritis”, Cell Prolif, 51:1 (2018), e12404 | DOI | DOI
[21] M. Abbasifard, Z. Kamiab, Z. Bagheri-Hosseinabadi, I. Sadeghi, “The role and function of long non-coding RNAs in osteoarthritis”, Exp. Mol. Pathol, 114 (2020), 104407 | DOI | DOI
[22] L. Tang, Y. Liang, H. Xie, X. Yang, G. Zheng, “Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives”, Cell Prolif, 53:1 (2020), e12698 | DOI | MR | DOI | MR
[23] S. Li, H. Zeng, J. Huang, J. Lu, J. Chen, Y. Zhou, L. Mi, X. Zhao, L. Lei, Q. Zeng, “Identification of the Competing Endogenous RNA Networks in Oxidative Stress Iniury of Melanocytes”, DNA Cell Biol, 40:2 (2021), 192–208 | DOI | DOI
[24] D. Li, L. Liu, X. He, N. Wang, R. Sun, X. Li, T. Yu, X. Chu, “Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects”, Life Sci, 330 (2023), 122006 | DOI | DOI
[25] E. Clough, T. Barrett, “The Gene Expression Omnibus database”, Methods Mol. Biol, 1418 (2016), 93 | DOI | DOI
[26] Z. Xie, A. Bailey, M. V. Kuleshov, D. J.B. Clarke, J. E. Evangelista, S. L. Jenkins, A. Lachmann, M. L. Woiciechowicz, E. Kropiwnicki, K. M. Jagodnik et al, “Gene Set Knowledge Discovery with Enrichr”, Curr. Protoc, 1:3 (2021), e90 | DOI | MR | DOI | MR
[27] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou et al, “STRING v10: protein-protein interaction networks, integrated over the tree of life”, Nucleic Acids Res., 43:D1 (2015), D447-D452 | DOI | DOI
[28] M. Cario-Andre, C. Pain, Y. Gauthier, A. Tai'eb, “The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis”, Pigment Cell Res, 20:5 (2007), 385–393 | DOI | DOI
[29] R. Yaghoobi, M. Omidian, N. Bagherani, “Vitiligo: A review of the published work”, J. Dermatol, 38:5 (2011), 419–431 | DOI | DOI
[30] X. Yu, Y. Cui, X. Zhu, H. Xu, L. Li, G. Gao, “MicroRNAs: Emerging players in the pathogenesis of vitiligo”, Front. Cell Dev. Biol, 10 (2022), 964982 | DOI | DOI
[31] J. Guo, Q. Gan, C. Gan, X. Zhang, X. Ma, M. Dong, “LncRNA MIR205HG regulates melanomagenesis via the miR-299-3p/VEGFA axis”, Aging, 13:4 (2021), 5297–5311 | DOI | DOI
[32] X. Hu, H. Kim, T. Rai, P. J. Brennan, G. Trynka, N. Teslovich, K. Slowikowski, W. M. Chen, S. Onengut, C. Baecher-Allan et al, “Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells”, PLos Genet, 10:6 (2014), e1004404 | DOI | DOI
[33] J. Duan, E. N. Greenberg, S. S. Karri, B. Andersen, “The circadian clock and diseases of the skin”, FEBS Lett, 595:19 (2021), 2413–2436 | DOI | DOI
[34] Y. Y. Chen, L. P. Liu, H. Zhou, Y. W. Zheng, Y. M. Li, “Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis”, Cells, 11:13 (2022), 2082 | DOI | DOI
[35] S. Del Bino, C. Duval, F. Bernerd, “Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact”, Int. J. Mol. Sci, 19:9 (2018), 2668 | DOI | DOI
[36] S. Pei, J. Chen, J. Lu, S. Hu, L. Jiang, L. Lei, Y. Ouyang, C. Fu, Y. Ding, S. Li et al, “The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes”, J. Invest. Dermatol., 140:1 (2020), 152–163.e5 | DOI | DOI
[37] M. Alhelf, L. A. Rashed, N. Ragab, M. F. Elmasry, “Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo”, Int. J. Dermatol, 61:2 (2022), 199–207 | DOI | DOI
[38] F. Liu, A. Singh, Z. Yang, A. Garcia, Y. Kong, F. L. Meyskens, “MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells”, Mol. Cancer, 9:1 (2010), 1–12 | DOI | Zbl | DOI | Zbl
[39] K. Pang, Y. Xiao, L. Li, X. Chen, G. Wei, X. Qian, T. Li, Y. Guo, J. Chen, Y. Tang, “LncRNA-mRNA co-expression network revealing the regulatory roles of lncRNAs in melanogenesis in vitiligo”, J. Hum. Genet, 67 (2022), 247–252 | DOI | DOI
[40] J. Du, A. J. Miller, H. R. Widlund, M. A. Horstmann, S. Ramaswamy, D. E. Fisher, “MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma”, Am. J. Pathol, 163:1 (2003), 333–343 | DOI | DOI
[41] J. Yoshizawa, Y. Abe, N. Oiso, K. Fukai, Y. Hozumi, T. Nakamura, T. Narita, T. Motokawa, K. Wakamatsu, S. Ito et al, “Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations”, J. Dermatol, 41:4 (2014), 296–302 | DOI | DOI